Естественные и искусственные источники ионизирующих излучений
Все живые организмы на Земле, в том числе и человек, постоянно подвергаются воздействию ионизирующих излучений, обусловленных естественным радиационным фоном.
К естественным источникам ионизирующих излучений относятся космическое излучение и естественные радиоактивные вещества, находящиеся на поверхности и в недрах Земли, в атмосфере, воде, растениях и организмах всех живых существ, населяющих нашу планету.
Источниками космического излучения являются звездные взрывы в галактике и солнечные вспышки.
Солнечное космическое излучение не приводит к заметному увеличению дозы излучения на поверхности Земли.
Недавно установлено, что один из наиболее распространенных источников радиации — радон. Это невидимый, не имеющий ни вкуса, ни запаха, тяжелый газ (в 7,5 раза тяжелее воздуха). Он высвобождается из земной коры повсеместно. Его концентрация в закрытых помещениях обычно в 8 раз выше, чем на улице. Лучшая защита от него — хорошая вентиляция подвальных помещений и жилых комнат.
Другие источники поступления радона в жилые помещения — вода и природный газ. При кипячении воды радон улетучивается, в сырой же воде его намного больше. Основную опасность представляет его попадание в легкие с парами воды. Чаще всего это происходит в ванной при приеме горячего душа.
Под землей радон смешивается с природным газом и при сжигании того в кухонных плитах, отопительных и других нагревательных приборах попадает в помещения.
Годовая доза облучения людей естественными источниками составляет примерно 30—100 мбэр (0,03—0,1 бэр). Известны пять географических районов на нашей планете, в которых естественный радиационный фон существенно больше, чем в других. Это Бразилия, Франция, Индия, о. Ниуэ в Тихом океане и Египет. Население, проживающее в этих районах, тщательно обследовали. Однако никакой связи между повышенным уровнем радиации и биологическими нарушениями не установлено.
К искусственным источникам ионизирующих излучений относятся: производства, связанные с использованием радиоактивных изотопов, атомные электростанции, транспортные и научно-исследовательские ядерно-энергетические установки, специальные военные объекты, рентгеновская техника и медицинская аппаратура лучевой терапии, а также бытовые излучатели.
В зависимости от того, расположен источник излучения вне или внутри организма, различают внешнее и внутреннее облучение человека.
Внешнее облучение организма производят космические лучи, а также природные и искусственные излучатели, находящиеся в воздухе, в земле, стенах помещения или используемые в производственных, научных, медицинских и бытовых целях.
Существенную роль играет при этом местонахождение человека. Чем выше он находится над уровнем моря, тем сильнее его облучение, ибо толщина и плотность воздушного слоя атмосферы по мере подъема уменьшаются, снижая ее защитные свойства.
Так, люди, проживающие в местности, располагающейся на уровне моря, в год получают дозу внешнего облучения, в 6 раз меньшую, чем живущие на высоте 4000 м. На высоте 12 км доза облучения за счет космических лучей увеличивается примерно в 25 раз.
Внутреннее облучение зависит от радиоактивных веществ, попадающих внутрь организма человека с вдыхаемым воздухом, продуктами питания, водой.
Вдыхаемые с аэрозолями радиоактивные газы попадают в дыхательную систему. Из нее они проникают в кровь, лимфу, желудочно-кишечный тракт и разносятся по всему организму, оседая в различных органах и тканях: костях, печени, селезенке, щитовидной железе и др. При вдыхании воздуха через нос задерживается до 83% радиоактивной пыли.
Второй путь попадания радиоактивных веществ внутрь организма человека — пищеварительный тракт. Из него эти вещества всасываются в кровь и попадают в различные органы человека.
Поступление радиоактивных веществ в организм человека через кожу возможно при открытых ранах и повреждениях.
Основные гигиенические нормативы облучения: (1Зв — 1Дж/кг — 102 бэр.).
0,02 зиверта — средняя годовая эффективная доза для работников;
1 зиверт — эффективная доза за период трудовой деятельности (50 лет) для работников;
0,001 зиверта — средняя годовая эффективная доза для населения;
0,07 зиверта — эффективная доза за период жизни (75 лет) для населения.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.
Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.
Источник
Ионизирующее излучение
Ионизирующее излучение представляет собой поток частиц, способных вызывать ионизацию вещества. При ионизации происходит отрыв электрона или нескольких электронов от атома, или молекулы, которые при этом превращаются в положительно заряженные ионы. Оторванные от атомов или молекул электроны могут присоединяться другими атомами, или молекулами, образуя отрицательно заряженные ионы.
Разряд заряженного электрометра, находящегося в воздухе, происходящий независимо от качества электрической изоляции прибора, заметил еще Шарль Кулон в 1785 г., но только в XX веке удалось объяснить обнаруженные им закономерности действием космических лучей, представляющих собой одну из составляющих естественного ионизирующего излучения.
Результат действия ионизирующего излучения называют облучением. Несмотря на многообразие явлений, которые возникают в веществе под действием ионизирующего излучения, оказалось, что облучение может быть охарактеризовано единой величиной, называемой дозой облучения.
Действие ионизирующего излучения в широком диапазоне доз скрыто от непосредственных ощущений человека и поэтому оно кажется ему одним из наиболее опасных факторов воздействия.
В быту и в некоторых отраслях науки, техники и медицины ионизирующее излучение принято называть просто радиацией. Строго говоря, это не совсем верно, т.к. сам по себе термин «радиация» охватывает все виды излучения, включая самые длинные радиоволны и потоки частиц любой сколь угодно малой энергии, а также волны деформации в веществе, например, звуковые волны. Тем не менее, употребление слова «радиация» применительно к ионизирующему излучению настолько вошло в привычку, что в науке прижились термины, сформированные на его основе, такие, как, например, радиология (наука о медицинских применениях ионизирующего излучения), радиационная защита (наука о методах снижения доз облучения до приемлемых уровней), естественный радиационный фон, и т.п.
Виды ионизирующих излучений
Ионизирующее излучение (ИИ) — поток микрочастиц или электромагнитные поля, способные ионизировать вещество. В жизни, под ионизирующим излучением понимают проникающую радиацию — поток гамма-лучей и частиц (альфа, бета, нейтронов и др.).
Это, по сути, поток элементарных частиц, ионов и электромагнитных волн, не видимых и не ощущаемых человеком. Однако, их действие может быть коварно. При определенном уровне облучения нарушаются биохимические и физические процессы в живых организмах. Это воздействие может привести к лучевой болезни и даже к смерти. Различные виды ионизирующего излучения различают по их ионизирующей и проникающей способности.
Чаще всего ионизирующие излучения делят на:
- корпускулярное ионизирующее излучение и
- электромагнитное (фотонное) ионизирующее излучение.
Корпускулярное ИИ состоит из частиц вещества – элементарных частиц и ионов, в т.ч. ядер атомов. Корпускулярное ИИ делят на:
- заряженные частицы, в том числе,
- легкие заряженные частицы (электроны и позитроны);
- тяжелые заряженные частицы (мюоны, пионы и другие мезоны, протоны, заряженные гипероны, дейтроны, альфа-частицы, и другие ионы);
- электрически нейтральные частицы (нейтрино, нейтральные пионы и другие мезоны, нейтроны, нейтральные гипероны).
Альфа-излучение (поток ядер гелия, возникающий в результате альфа распада ядер элементов) обладает высокой ионизирующей, но слабой проникающей способностью: пробег альфа-частиц в сухом воздухе при нормальных условиях не превышает 20 см, а в биологической ткани – 260 мкм. То есть слой воздуха 9-10 см, верхняя одежда, резиновые перчатки, марлевые повязки, даже бумага полностью защищают организм от внешних потоков альфа-частиц.
*Попадание источников альфа-частиц внутрь организма с воздухом, водой и пищей уже очень опасно.
Бета-излучение (поток электронов или позитронов, возникающий в результате бета-распада ядер) имеет меньшую ионизирующую способность, чем альфа-излучение, но большую проникающую способность. Поскольку максимальные энергии бета-частиц не превышают 3 МэВ, то от них гарантированно защитит оргстекло толщиной 1,2 см, либо слой алюминия в 5,2 мм. А вот на ускорителе с максимальной энергией электронов 7 МэВ от электронов защитит слой алюминия в 1,5 см, либо слой бетона шириной в 2 см.
Гамма-излучение — сопутствующее ядерным превращениям электромагнитное излучение. Сегодня к гамма-излучению относят также жесткое рентгеновское излучение. Обладает очень высокой проникающей способностью. Оградить себя от гамма-излучения практически невозможно, однако можно ослабить его до приемлемого уровня. Защитные средства, обладающие экранирующим действием от такого рода радиации, выполняются из свинца, чугуна, стали, вольфрама и других металлов с высоким порядковым номером.
*Интенсивность гамма лучей (Cs-137) уменьшают в два раза сталь толщиной 2,8 см., бетон – 10 см., грунт – 14 см., дерево – 30 см.
Нейтронное излучение – поток нейтронов – тяжелых частиц, входящих в состав ядра. Для защиты от этого излучения можно использовать убежища, противорадиационные укрытия, дооборудованные подвалы и погреба. Потоки нейтронов, как и потоки гамма-излучения невозможно полностью экранировать. Быстрые нейтроны сначала надо замедлить в воде, полиэтилене, парафине, можно в бетоне, а затем их необходимо поглотить, например, в кадмиевой фольге, за которой должен стоять достаточный слой свинца, чтобы экранировать возникающее при захвате нейтронов ядрами кадмия высокоэнергетическое гамма-излучение. Поэтому защита от нейтронов, как правило, делается комбинированной .
По подсчетам научного комитета по действию атомной радиации ООН, средняя эффективная эквивалентная доза внешнего облучения, которую человек получает за год от земных источников естественной радиации, составляет приблизительно 350 мкЗв, то есть немного больше средней дозы облучения через радиационный фон, который образуется космическими лучами.
Для улучшенной консервативной оценки эквивалентной дозы, в целях индивидуальной дозиметрии профессионально облучаемых работников и мониторинга рабочих мест вводят модельную, т.н. рабочую величину, именуемую амбиентным эквивалентом дозы.
К основным радиоактивным явлениям относятся: a -распад, ß± -превращения (распады) и y-излучение. К явлениям ß-превращений относятся следующие самопроизвольные процессы: ß- -превращение (ß- -распад), ß+ -превращение (ß+-распад), электронный захват (e). Также к явлениям радиоактивности относят: спонтанное деление, кластерную активность,нейтронную активность, протонную активность, бета-задержанные распады ядер.
Источник
О природных источниках ионизирующих излучений
Основную часть облучения население земного шара получает от природных (естественных) источников радиации. Большинство из них таковы, что избежать облучения от них совершенно невозможно. На протяжении всей истории существования Земли разные виды излучения падают на поверхность Земли из космоса и поступают от радиоактивных веществ, находящихся в земной коре. Человек подвергается облучению двумя способами.
Радиоактивные вещества могут находиться вне организма и облучать его снаружи — это внешнее облучение. Или же они могут оказаться в воздухе которым дышит человек, в пище или в воде и попасть внутрь организма — внутреннее облучение.
Радиационный фон, создаваемый космическими лучами, дает чуть меньше половины внешнего облучения, получаемого населением от естественных источников радиации. Космические лучи в основном приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек.
Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов. Одни участки земной поверхности более подвержены действию лучей, чем другие. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы (из которых в основном и состоят космические лучи). Уровень облучения растет и с высотой, поскольку воздух выполняет роль защитного экрана.
Люди, живущие на уровне моря, получают в среднем из-за космических лучей меньшую годовую дозу облучения, чем люди, живущие высоко над уровнем моря. Более интенсивному, хотя и относительно непродолжительному облучению, подвергаются экипажи и пассажиры самолетов. Источником земной радиации являются основные радиоактивные изотопы, встречающиеся в горных породах Земли, — это калий-40, рубидий-87 и члены двух радиоактивных семейств, берущих начало соответственно от урана-238 и тория-232 — долгоживущих изотопов, включившихся в состав Земли с самого ее рождения. Разумеется, уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентраций радионуклидов в том или ином участке земной коры. В среднем примерно 2/3 эффективной эквивалентной дозы облучения, которую человек получает от природных источников радиации, поступает от радиоактивных веществ, попавших в организм с пищей, водой и воздухом (внутреннее облучение). Совсем небольшая часть этой дозы приходится на радиоактивные изотопы типа углерода-14 и трития, которые образуются под воздействием космической радиации. Все остальное поступает от источников земного происхождения, например за счет калия-40, который усваивается организмом вместе с не радиоактивными изотопами калия, необходимыми для жизнедеятельности организма. Однако значительно большую дозу внутреннего облучения человек получает от нуклидов радиоактивного ряда урана-238 и в меньшей степени от радионуклидов ряда тория-232.
Десятки тысяч людей на Крайнем Севере питаются в основном мясом северного оленя, в котором радиоактивные нуклиды свинца-210 и полония-210 присутствуют в довольно высокой концентрации. Эти изотопы попадают в организм оленей зимой, когда они питаются лишайниками. Дозы внутреннего облучения человека от полония-210 в этих случаях могут в 35 раз превышать средний уровень. А в другом полушарии люди, живущие в Западной Австралии в местах с повышенной концентрацией урана, получают дозы облучения, в 75 раз превосходящие средний уровень, поскольку едят мясо и требуху овец и кенгуру. Наиболее весомым из всех природных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раза тяжелее воздуха) радон. Радон высвобождается из земной коры повсеместно, но его концентрация в наружном воздухе существенно различается для разных точек земного шара.
Основную часть дозы облучения от радона человек получает, находясь в закрытом, не проветриваемом помещении. Радон поступает в помещения просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома. В результате в помещении могут возникать довольно высокие уровни радиации, особенно если дом стоит на грунте с относительно повышенным содержанием радионуклидов. Самые распространенные строительные материалы — дерево, кирпич и бетон — выделяют относительно немного радона. Гораздо большей удельной радиоактивностью обладают гранит и пемза, используемые в качестве строительных материалов. Также источником поступления радона в жилые помещения являются вода и природный газ.
Концентрация радона в обычно используемой воде чрезвычайно мала, но вода из некоторых источников, особенно из глубоких колодцев или артезианских скважин, содержит очень много радона. Однако основная опасность исходит вовсе не от питья воды, даже при высоком содержании в ней радона. При кипячении воды или приготовлении горячих блюд радон в значительной степени улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной комнате. В среднем концентрация радона в ванной комнате примерно в три раза выше, чем на кухне, и приблизительно в 40 раз выше, чем в жилых комнатах
Источник