Меню

Этапы эволюции вселенной адронная эра

Эры существования Вселенной (Шкала времени Вселенной)

8 основных этапов жизни нашей вселенной — от образования вселенной в ходе Большого взрыва и до её полного угасания в ходе так называемой Эры Темноты

Большой взрыв!

Начало времен. Вселенная появляется из сверхплотной и сверхгорячей точки (сингулярности) и начинает быстро расширятся во все стороны пространства. При этом Большой взрыв не уникален и возможно существование других Вселенных, рожденных в результате своего большого взрыва.

Большой взрыв в представлении художника. Как это выглядело на самом деле (и даже было ли все именно так), мы, как вы понимаете, на самом деле не знаем

Эра инфляции.

Началом времени 10 -44 с является планковское время, являющееся квантовой единицей времени и время не может быть разделено на промежутки меньшие данного (при современных законах).

При времени 10 -37 с неимоверно горячая и плотная Вселенная начинает многократно расширяться с громадным ускорением. В этот момент начинают образовываться едва уловимые флуктуации плотности вещества, которые в дальнейшем станут зародышами галактик, скоплений галактик.

Инфляционная стадия завершается при времени 10 -32 с, после чего расширение продолжилось с гораздо меньшей скоростью.

Эра господства излучения.

Эра господства излучения длится около 10000 лет. На начальном этапе во Вселенной практически ничего нет, кроме однородного и очень сильного электромагнитного излучения. Сложное взаимодействие частиц привело к небольшому перевесу обычного вещества над антивеществом.

Антивещество затем почти полностью проаннигилировало с веществом, а остаток вещества стал материалом для всех ныне наблюдаемых объектов Вселенной. В течение первых минут жизни Вселенной в ней произошло образование ядер атомов легких элементов – водорода, дейтерия, гелия и лития. Как только энергия ослабевающего излучения стала меньше энергии материи, окончилась радиационная эра.

Эра рекомбинации.

Началу звездной эры предшествовало то, что в возрасте 300000 лет Вселенная стала достаточно холодной для образования атомов водорода (т.е началась эра рекомбинации).

В это время Вселенная становится прозрачной для собственного излучения (до этого излучение непрерывно взаимодействовало с частицами вещества). Это излучение сейчас мы и наблюдаем в виде реликтового (фонового микроволнового) излучения.

В эпоху рекомбинации флуктуация плотности вещества стала разрастаться, так как этому не стало препятствовать излучение, и начали формироваться звезды и галактики.

Рождение звезды – материя в центре пылевого облака уплотняется до тех пор, пока сила гравитации не станет такой большой, что запустится самопроизвольная термоядерная ядерная реакция

Звездная эра (идет в настоящий момент времени).

Большая часть энергии в эту эру генерируется в недрах звезд путем термоядерных реакций. Мы живем примерно в середине этой эры, когда звезды активно формируются, живут и умирают.

Первое поколение звезд образовалось в первые миллионы жизни Вселенной, а первые галактики в первые миллиарды лет. В последующие несколько миллиардов лет они сгруппировались в скопления, сверхскопления и более крупные структуры. Возраст нашей Галактики 13,7 млрд.лет, а Солнечной системы 4,9 млрд. лет.

В больших масштабах происходит столкновение галактик, которое не оказывает серьезного влияния на находящиеся в них звезды и планеты.

Примерно через 6 млрд.лет наша Галактика встретится с М31 и сольются либо сразу, либо разойдутся чтобы опять в конце концов соединиться. Подобная участь ожидает многие галактики, образуя в будущем огромные аморфные галактикоподобные системы, что уже наблюдается в некоторых богатых скоплениях. Ближе к концу звездной эры ключевую роль начнут играть красные карлики с массой в половину солнечной, яркость которых будет возрастать. Они будут светиться несколько триллионов лет.

А звезды с массой менее 0,08 солнечной, в которых в ядре вообще не возникает термоядерная реакция, будут находиться на главной последовательности порядка 10 -50 триллионов лет.

Приблизительно через это время может исчерпаться межзвездный газ – водород и процесс звездообразования навсегда прекратиться. Эра закончится, когда во Вселенной не останется светящихся звезд, когда выгорят последние красные карлики, когда возраст Вселенной будет 100 трлн. лет.

Эра вырождения.

Большая часть объектов вселенной к этому времени по окончанию звездной эволюции превратится в вырожденные объекты: белые и коричневые карлики, нейтронные звезды.

Вселенная станет темной и холодной с температурой в долю градуса выше абсолютного нуля. Галактики будут постепенно менять свою структуру из за меняющихся случайно орбит тухнущих звезд, потерявших свои планеты, которые как и звезды отправятся в свободное межгалактическое пространство.

Небольшое количество массивных звезд, не способных покинуть галактику, будут поглощаться центральными галактическими черными дырами. Иногда, во время столкновения коричневых карликов с образованием красного карлика, на небе будет вспыхивать свет. Но в целом во всей галактике света будет меньше, чем сейчас излучает одно только Солнце.

Помимо этого, раз в триллион лет галактику будет потрясать взрыв сверхновой, происходящий при столкновении двух белых карликов. Полученное от взрыва ядро может зажечь внутри термоядерную реакцию в зависимости от оставшейся массы. Но в галактике за счет гравитационного излучения энергия звездами будет теряться.

Читайте также:  Этапы развития нашей вселенной после большого взрыва

Темное вещество, содержащееся в Гало галактики будет поглощено белыми карликами и аннигилировано и это будет в данный момент времени основной источник энергии в галактике. Дальнейшее – это действие черных дыр, втягивающих и поглощающих сперва звезды в масштабах галактики, а затем и в масштабах скоплений. И закончится эра распадом протонов, время жизни которых 10 37 лет.

Как и в случае с Большим взрывом, как выглядят «черные дыры» мы не знаем. Да и знать не можем – ведь черные дыры не выпускают даже свет, соответственно видеть их… мы не можем в принципе!

Эра черных дыр.

Единственными объектами во Вселенной остались черные дыры. Но они не вечны и испаряются, излучая с поверхности очень малую энергию в виде фотонов и элементарных частиц. Скорость излучения зависит от кривизны поверхности, т.е от размера и массы черной дыры.

Излучение для черной дыры с массой Солнца крайне мало и со временем ускоряется и заканчивается вспышкой гамма-излучения. Такая черная дыра имеет поверхностную температуру порядка 10 -7 К и сможет просуществовать 10 65 лет. Черная дыра с массой крупной галактики имеет поверхностную температуру порядка 10 -18 К и для испарения требуется 10 98 -10 100 лет.

Эра темноты

Во Вселенной осталось лишь немного вещества: фотоны с очень большим красным смещением, небольшое количество нейтрино, электроны и позитроны на очень больших расстояниях друг от друга и если встретятся, то аннигилируют в фотоны очень больших энергий, которые затем в результате расширения вселенной будут увеличивать длину волны и становиться менее энергетичными.

из статьи Фреда Адамс и Грэгори Лафлин “Будущее Вселенной”

Источник

Этапы эволюции вселенной — научный подход

вкл. 14 Июнь 2018 . Опубликовано в Наука и эзотерика

Процесс эволюции Вселенной происходит очень медленно.

Современные астрономические наблюдения свидетельствуют о том, что началом Вселенной, приблизительно десять миллиардов лет назад, был гигантский огненный шар, раскаленный и плотный. Его состав весьма прост. Этот огненный шар был настолько раскален, что состоял лишь из свободных элементарных частиц, которые стремительно двигались, сталкиваясь друг с другом.

Момент, с которого Вселенная начала расширятся, принято считать ее началом. Тогда началась первая и полная драматизма эра в истории вселенной, ее называют “большим взрывом”.

Эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.

Адронная эра. Первая эра называется адронной по имени тяжелых частиц. Состав Вселенной в начале этой эры очень сложный и представлен частицами столь высоких энергий, что экспериментально они еще не обнаружены. Характерной особенностью адронной эры является сосуществование частиц и античастиц, т.е. вещества и антивещества.

Частицы и античастицы аннигилируют и возникают вновь, распадаются и рождаются в результате взаимодействий. Аннигиляция пары «частица-античастица» означает превращение их в излучение.Это свет, рентгеновские или гамма-лучи. При громадных энергиях, процессах аннигиляции и рождения частиц, материю в адронную эру можно охарактеризовать как некую адронную плазму, представляющую бесформенную, довольно однородную смесь частиц, античастиц и излучения.

Лептонная эра. Когда энергия частиц и фотонов понизилась в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада адронов в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010 K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

Фотонная эра или эра излучения. Во время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко — альфа-частицы. В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее.

Хотя скорость их осталась прежней, в течение эры излучения гамма-фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что к каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Кончается эра излучения и вместе с этим период “большого взрыва”. Так выглядела Вселенная в возрасте примерно 300 000 лет.

Читайте также:  Может ли быть другая вселенная

“Большой взрыв” продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. В столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

Звездная эра. После “большого взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения “большого взрыва” до наших дней. По сравнению с периодом “большого взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет.

Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик.

Итак, эволюцию Вселенной можно сравнить с фейерверком, который окончился. Остались горящие искры, пепел и дым. Мы стоим на остывшем пепле, вглядываемся в стареющие звезды и вспоминаем красоту и блеск Вселенной.

Источник

Характеристика адронной, лептонной, фотонной и звездной эр эволюции Вселенной

Длилась примерно от t=10 -6 до t=10 -4 . Плотность порядка 10 17 кг/м 3 при T=10 12 …10 13 .

При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.

Через миллионную долю секунды с момента рождения Вселенной, температура Tупала на 10 биллионов Кельвинов (10  K. Средняя кинетическая энергия частиц kTи фотонов hсоставляла около миллиарда эв (10  Мэвчто соответствует энергии покоя барионов.

В первую миллионную долю секунды эволюции Вселенной происходила материализация всех барионов неограниченно, так же, как и аннигиляция. Но по прошествии этого времени материализация барионов прекратилась, так как при температуре ниже 10  Kфотоны не обладали уже достаточной энергией для ее осуществления. Процесс аннигиляции барионов и антибарионов продолжался до тех пор, пока давление излучения не отделило вещество от антивещества. Нестабильные гипероны (самые тяжелые из барионов) в процессе самопроизвольного распада превратились в самые легкие из барионов (протоны и нейтроны). Так во вселенной исчезла самая большая группа барионов — гипероны. Нейтроны могли дальше распадаться в протоны, которые далее не распадались, иначе бы нарушился закон сохранения барионного заряда. Распад гиперонов происходил на этапе с 10  до10  секунды.

К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10  с), температура ее понизилась до 10  K, а энергия частиц и фотонов представляла лишь 100Мэв. Ее не хватало уже для возникновения самых легких адронов — пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10  с., в ней исчезли все мезоны.

На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.

Длилась примерно от t=10 -4 до t=10 1 . К концу эры плотность порядка 10 7 кг/м 3 при T=10 9 .

Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.

Лептонная эра начинается с распада последних адронов — пионов — в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10  K,когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми«.

Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.

Фотонная эра или эра излучения.

Читайте также:  Сколько осталась жить вселенной

Длилась примерно от t=10 -6 до t=10 -4 . Плотность порядка 10 17 кг/м 3 при T=10 12 …10 13 .

На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до10  K, а энергия гамма фотонов достигла 1Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества.

Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем не только по количеству, но и по энергии.

Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1куб. см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hвсех фотонов, присутствующих в 1куб. см, то мы получим плотность энергии излучения Er. Сумма энергии покоя всех частиц в 1 куб. см является средней энергией вещества Em во Вселенной.

Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно “устают» со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em).

Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть Er =Em). Кончается эра излучения и вместе с этим период “Большого Взрыва”.Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.

“Большой взрыв»продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время “большого взрыва”. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции.

Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все: одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны).

После “Большого Взрыва” наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой.Она продолжается со времени завершения “Большого Взрыва” (приблизительно 300 000лет) до наших дней. По сравнению с периодом “Большого Взрыва” её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.

«Реликтовое излучение»

Реликтовое излучение, космическое электромагнитное излучение, приходящее на Землю со всех сторон неба примерно с одинаковой интенсивностью и имеющее спектр, характерный для излучения абсолютно черного тела при температуре около 3 К (3 градуса по абсолютной шкале Кельвина, что соответствует –270° С). При такой температуре основная доля излучения приходится на радиоволны сантиметрового и миллиметрового диапазонов. Плотность энергии реликтового излучения 0,25 эВ/см 3 .

Радиоастрономы-экспериментаторы предпочитают называть это излучение «космическим микроволновым фоновым излучением» cosmic microwave background, CMB). Астрофизики-теоретики часто называют его «реликтовым излучением» (термин предложен русским астрофизиком И.С.Шкловским), поскольку в рамках общепринятой сегодня теории горячей Вселенной это излучение возникло на раннем этапе расширения нашего мира, когда его вещество было практически однородным и очень горячим. Иногда в научной и популярной литературе можно также встретить термин «трехградусное космическое излучение». Далее мы будем называть это излучение «реликтовым».

Открытие в 1965 реликтового излучения имело огромное значение для космологии; оно стало одним из важнейших достижений естествознания 20 в. и, безусловно, самым важным для космологии после открытия красного смещения в спектрах галактик. Слабое реликтовое излучение несет нам сведения о первых мгновениях существования нашей Вселенной, о той далекой эпохе, когда вся Вселенная была горячей и в ней еще не существовало ни планет, ни звезд, ни галактик. Проведенные в последние годы детальные измерения этого излучения с помощью наземных, стратосферных и космических обсерваторий приоткрывают завесу над тайной самого рождения Вселенной.

Источник

Adblock
detector