ВОЗНИКНОВЕНИЕ ВСЕЛЕННОЙ, ЕЕ ЭВОЛЮЦИЯ (по Г.А. Гамову)
ОБЩИЕ СВЕДЕНИЯ ПЛАНЕТОЛОГИЧЕСКОГО ХАРАКТЕРА
Происхождение Вселенной и Земли. Эволюция Вселенной
До 20-х годов прошлого столетия астрофизики считали, что наша Вселенная является стационарной. А. Эйнштейном выведены были специальные гравитационные уравнения для описания стационарной Вселенной. На основе новых решений А.А. Фридман (1888-1925гг, советский математик и геофизик) установил, что наша Вселенная нестационарна и она расширяется. Исходя из этих данных Г.А. Гамов (1904-1968гг, род. в России, с 1934 г в США) в 1946 предложил модель горячей Вселенной, ныне принятую подавляющим большинством исследователей процессов эволюции Вселенной.
В соответствии с этой моделью Вселенная в момент времени 10 -44 сек после Большого взрыва представляла собой квазиточку размером 10 -33 см, плотностью
10 93 г/см 3 и температурой свыше 10 33 0 К. Такая частица получила название суперадрона. Большой взрыв произошел примерно 15. 20 млрд. лет тому назад и Вселенная с этого момента стала расширяться, представляя собой высокотемпературную плазму* примерно порядка 3-х миллиардов лет, пока не остыла примерно до 3000 0 К и не появилась возможность образования нейтральных атомов (в основном, водорода, гелия).
Этап эволюции расширяющейся Вселенной астрофизики разделяют на 4 эры (см. схему): а) адронная, б) лептонная, в) излучения, г) вещества. В последней стали возникать атомы водорода и гелия, из которых в последующем образовались галактики, черные дыры, звёзды, планеты и др. космические объекты.
Галактики стали формироваться спустя примерно 3 млрд. лет после начала расширения Вселенной в местах скопления облаков нейтринного газа, представляющего собой так называемые гравитационные ямы. При скоплении в таких местах неоднородностей порядка 10 40 т начинают возобладать процессы сдавливания вещества преимущественно в двух противоположных направлениях. Всего астрономы выделяют 4 типа галактик: эллиптические, спиральные, линзовидные и неправильные.
Во Вселенной в настоящее время насчитывается 10 11…14 Галактик. Наша Галактика (Млечный путь) относится к спиральному типу. В ней порядка 200 млрд. звёзд общей массой 3×10 38 т.
Формирование звёзд начинается сразу после образования Галактик. Солнце образовалось около 5 млрд. лет назад, его масса составляет 2×10 27 т (Мс). В нашей Галактике на звёзды приходится 97% всей её массы. Остальная часть материи распределена в виде межзвёздного газа и пыли.
ВОЗНИКНОВЕНИЕ ВСЕЛЕННОЙ, ЕЕ ЭВОЛЮЦИЯ (по Г.А. Гамову)
Супер-
адрон Т = 10 -44 с; D = 10 -33 см; r = 10 93 г/см 3 ; t 0 =10 33 0 К.
В Эры:
с Барионы, мезоны
е адронная Взрыв D = 10 -33 …10 9 км, r = 10 93 …10 15 , t 0 =10 33 …10 12
л Т=10 -44 …10 -4 с Мюоны, электроны, позитроны, нейтрино, антиней-
е лептонная трино, фотоны
н Т= 10 -4 …10 с D = 10 9 …3×10 12 км, r = 10 15 …1.5×10 5 , t = 10 12 …10 10 0 К
н излучения Электроны, протоны, ядра гелия, фотоны
а Т= 10с…10 6 лет D = 3×10 12 …6×10 20 км, r = 1.5×10 5 …10 -20 , t = 10 10 …3×10 3 0 К
я Атомы, квазары, черные дыры, галактики, звёзды,
Т= 10 6 …2×10 10 лет D = 6×10 20 …2×10 23 км, r =10 -20 …3×10 -29 г/см 3 , t = 3×10 3 0 К
Всего Галактик 10 11…14 , звезд в них — 7×10 22
200 млрд. звезд с m = 3×10 38 т
ПУТЬ V = 600 км/c, диаметр 100 тыс. свет. лет,
эллиптические, толщина 1 тыс. свет. лет
спиральные,
линзовидные, ЗВЁЗДЫ, На все звёзды приходится 97% массы Галактики.
неправильные планеты Звезды с массами 0,1 Mc 27 т)
Звездные CОЛНЕЧНАЯ Т = -220° С. Облако имело массу 2…3 Mc
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.03 сек.)
Источник
Модель горячей Вселенной
Эволюция Вселенной
В основе современных представлений об эволюции Вселенной лежит модель горячей Вселенной, или «Большого Взрыва», основы которой были заложены в трудах американского физика русского происхождения Дж. Гамова и его сотрудников в конце 40-х гг. XX в. В соответствии с этой концепцией Вселенная на ранних стадиях расширения характеризовалась не только высокой плотностью вещества, но и его высокой температурой.
Ключ к пониманию ранних этапов эволюции Вселенной — в гигантском количестве теплоты, выделившейся при Большом Взрыве. В простейшем варианте теории горячей Вселенной предполагается, что Вселенная возникла спонтанно в результате взрыва из состояния с очень большой плотностью и энергией (состояние сингулярности). По мере расширения Вселенной температура падала (сначала быстро, а затем все медленнее) от очень большой до довольно низкой, обеспечивавшей возникновение условий, благоприятных для образования звезд и галактик. На протяжении около 1 млн лет температура превышала несколько тысяч градусов, что препятствовало образованию атомов, и, следовательно, космическое вещество имело вид разогретой плазмы, состоящей из ионизированных водорода и гелия. Лишь когда температура Вселенной понизилась приблизительно до температуры поверхности Солнца, возникли первые атомы. Таким образом, атомы — это реликты эпохи, наступившей через 1 млн лет после Большого Взрыва.
Модель горячей Вселенной получила экспериментальное подтверждение после открытия в 1965 г. реликтового излучения — микроволнового фонового излучения с температурой около 3 К. Косвенным подтверждением этой модели служит также наблюдаемое обилие гелия, превышающее повсеместно 22% по массе, а также обнаруженное в межзвездном газе неожиданно высокое содержание дейтерия, происхождение которого можно объяснить лишь ядерными реакциями синтеза легких элементов в горячей Вселенной. Зная современную температуру реликтового излучения, можно провести экстраполяцию в прошлое, используя хорошо известные и проверенные законы механики, термодинамики, статистической, атомной и ядерной физики, физики элементарных частиц и др.*
* Фундаментальным открытием самых последних лет, конца XX в., является обнаружение пространственной анизотропии реликтового излучения, фона Вселенной. Это расширяет возможности релятивистской космологии, делает несущественным влияние различных мешающих познанию начальных этапов Вселенной факторов — рассеяние электромагнитных волн на свободных электронах, на холодном молекулярном газе, поглощение пылью и др.
Возможность установить процессы, происходившие в первые секунды и минуты существования Вселенной, безусловно, следует рассматривать как блестящее достижение современного естествознания. Моделирование первой секунды существования Вселенной приближает нас к главной загадке природы — самому акту «сотворения мира»! Первые секунды Вселенной — это время таинственных состояний вещества и неведомых сил природы. Конечно, здесь следует быть осторожным. Наши представления об этом отрезке времени основаны во многом на гипотезах и гипотетических экстраполяциях, теоретическом моделировании, во многом спорных и умозрительных.
Экстремальные условия первых секунд жизни Вселенной сегодня можно изучать экспериментально. На современных ускорителях элементарных частиц удается воспроизводить физические условия, существовавшие в то время, когда возраст Вселенной составлял 10 -4 с, когда температура достигала 10 12 К, а вся наблюдаемая сегодня Вселенная была «сжата» до размеров Солнечной системы. За этими границами возможна только теоретическая экстраполяция известных нам физических законов. В целом она не вызывает сомнений вплоть до того момента, когда начинают проявляться квантовые свойства гравитации.
Вблизи сингулярности решения релятивистских уравнений неприменимы, поскольку там должны проявляться квантовые свойства гравитации, а свойства вещества в этом состоянии неизвестны. Существующие теории вещества и тяготения применимы к состояниям материи, плотность и температура которой меньше планковских: ρ = 10 93 г/см 3 ; Т ≈ 10 32 К. Планковской плотности и температуре соответствует возраст Вселенной τ ≈ 10 -43 с и расстояние r ≈ 10 -33 см. В планковскую эпоху физические условия были таковы, что для их описания требуется еще несозданная квантовая теория тяготения, и поэтому для описания самых ранних моментов рождения Вселенной пользуются гипотетическими, умозрительными моделями.
11.7.2. Большой Взрыв: инфляционная модель
Первая и важнейшая проблема связана с причинами Большого Взрыва, сложившимися в первые мгновения Вселенной. Они моделируются так называемой гипотезой инфляционной Вселенной. В основе этой гипотезы — представление о существовании компенсирующей гравитационное притяжение силы космического отталкивания невероятной величины, которая смогла разорвать некое начальное состояние материи и вызвать ее расширение, продолжающееся по сей день. В этой модели начальное состояние Вселенной является вакуумным.
Физический вакуум — это наинизшее энергетическое состояние всех полей, форма материи, лишенная вещества и излучения, но характеризующаяся активностью, возникновением и уничтожением виртуальных частиц (постоянно «кипит», но не выкипает) и способностью находиться в одном из многих состояний с сильно различающимися энергиями и давлениями, причем эти давления — отрицательные. Возбужденное состояние такого вакуума называют «ложным вакуумом», который способен создать гигантскую силу космического отталкивания. Эта сила и вызвала безудержное и стремительное раздувание «пузырей пространства» (зародышей одной или нескольких вселенных, каждая из которых характеризуется, допустим, своими фундаментальными постоянными*), в которых концентрировались колоссальные запасы энергии. Подобное раздувание Вселенной осуществлялось по экспоненте (за каждые 10 -32 с диаметр Вселенной увеличивался в 10 50 раз). Скорость раздувания значительно превосходила световую, но это не противоречит закону теории относительности, так как раздувание не связано с установлением причинно-следственных связей в веществе. Данный тип раздувания был назван инфляцией. Такое быстрое расширение означает, что все части Вселенной разлетаются, как при взрыве. А это и есть Большой Взрыв. В период квантовой космологии, т. е. с 10 -43 с по 10 -34 с произошло, по-видимому, и формирование пространственно-временных характеристик нашей Вселенной.
* О концепции множественности вселенных см.: Розенталь И.Л. Вселенная и частицы. М., 1990.
Но фаза инфляции не может быть длительной. Отрицательный (ложный) вакуум неустойчив и стремится к распаду. Когда распад завершается, отталкивание исчезает, следовательно, исчезает и инфляция. Вселенная переходит во власть обычного гравитационного притяжения. «Часы» Вселенной в этот момент показывали всего 10 -34 с. Но благодаря полученному первоначальному импульсу, приобретенному в процессе инфляции, расширение Вселенной продолжается, но неуклонно замедляется. Постепенное замедление расширения Вселенной — это единственный след, который сохранился до настоящего времени от начальных моментов Большого Взрыва.
В конце фазы инфляции Вселенная была пустой и холодной. Но по окончании фазы огромные запасы энергии, сосредоточенные в исходном физическом вакууме; высвободились в виде излучения, которое мгновенно нагрело Вселенную до температуры примерно 10 27 К и энергии 10 14 ГэВ. С этого момента начинается эволюция горячей Вселенной. Благодаря энергии возникли вещество и антивещество, затем Вселенная стала остывать и испытывать последовательные фазовые переходы, в которых постепенно стали «кристаллизоваться» все ее элементы, наблюдаемые сегодня.
Инфляционная модель Большого Взрыва объясняет крупномасштабную однородность и изотропность Вселенной, образование структур галактик и их скоплений из первичных малых возмущений плотности, особенности изменения радиуса пространственной кривизны (современное значение его близко к единице, как и в момент Большого Взрыва).
Несмотря на то что инфляционная модель разработана пока только частично, тем не менее она позволяет успешно объяснить ряд фундаментальных космологических закономерностей. Большой Взрыв перестал быть загадкой, лежащей за пределами естествознания.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник