Как происходит эволюция звёзд
Как известно, звезда — это гигантский раскаленный газовый шар, находящийся в состоянии равновесия. Внутри этого шара происходят термоядерные реакции, в результате которых вырабатывается энергия и излучается свет.
Практически любо тело во Вселенной имеет свой жизненный цикл. Собственно говоря, светила не исключения. Они также рождаются и умирают, как и другие тела. Правда, жизненный путь звезд, то есть последовательные изменения в течение всей её жизни, очень долгий. Ниже мы как раз рассмотрим основные этапы эволюции звезд.
Проксима Центавра
Стадии эволюции звезд
Основные этапы эволюции звезд, можно сказать, как у всех в нашей Вселенной.
Из них, главным образом, выделяют:
Но, как и мы отличаемся друг от друга, так и звёзды. Под влиянием разных факторов их жизненный путь у каждого свой. Всё как у людей. Нас даже создала одна природа и сила — сила нашей Вселенной.
Как появляются звёзды
Сначала в космическом пространстве образуются огромные газовые облака. На самом деле, эти холодные разреженные облака межзвёздного газа сжимаются под силой гравитации. Так начинается процесс звёздного формирования.
На его конечном этапе объект называют протозвездой. Вроде уже и не просто облако, но еще и не полноценное светило. Во время сжатия температура таких газовых облаков резко увеличивается. Из-за чего, в свою очередь, внутри них начинают происходить термоядерные реакции синтеза гелия из водорода.
Протозвезда
Главная последовательность
Именно в это время, то есть с началом ядерных процессов, рождается звезда. На данном этапе, чаще всего, она является представителем главной последовательности звезд. Правда, бывают и исключения. Например, субкарлики и коричневые карлики. Они отличаются небольшой массой и слабым ядерным синтезом.
Коричневый карлик
Между прочим стадия главной последовательности самая длинная в жизни светил (около 90% от общей продолжительности). Остальные же их этапы существования длятся значительно меньше. Вероятно, по этой причине во Вселенной преобладают звёзды, находящиеся именно на этой стадии развития. А вот как после неё будет проходить эволюционирование напрямую зависит от массы тела.
Эволюция звезд различной массы
Стоит отметить, что звездные тела имеют разные характеристики.
Низкая масса
Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.
К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода. Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.
Белый карлик
Средняя масса
Как оказалось, звёздная эволюция при средней массе тела проходит по следующему пути.
Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.
Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.
Красный гигант
Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.
Массивные звезды
А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.
Конвективная зона
Как происходит эволюция звезд на последнем этапе
Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.
На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.
Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.
Планетарная туманность Глаз Бога
Жизнь светил с высокой массой
Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.
И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.
Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.
По данным учёных, во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы. Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.
Эволюция звёзд
Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.
Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.
В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.
Источник
Рождение и этапы эволюции звезд
Рождение звезд
Как известно, звезды образуются из межзвездных газовых облаков, находящихся в большинстве своем в галактическом диске. Тем не менее, детально этот процесс образования звезды осмыслен еще не до конца.
В частности, еще неясно, какие явления могут приводить к концентрации газа в облаке, после которой начинается образование новой звезды – в космосе, как известно, вакуум, соответственно “толкотни” между молекулами не наблюдается. Отчего в один прекрасный момент гигантские, растянутые на световые года облака “космической пыли” вдруг начинают уплотнятся и формировать звезды? Хороший вопрос!
Диаграмма Герцшпрунга — Рессела: Шкала эволюции звезд
Один из самых интересных ответов на этот вопрос, предложенных астрономами, предполагает взрыв сверхновой недалеко от облака пыли. Действительно, взрыв порождает ударные волны, которые сжимают, газ, что приводит к необходимой его концентрации в самой плотной области облака.
С увеличением концентрации температура в центре облака поднимается, и протозвезда становится источником инфракрасного излучения. Когда температура достаточно высока, водород начинает гореть. Процесс уплотнения заканчивается, а звезда на диаграмме Герцшпрунга — Рессела оказывается на главной последовательности.
С этого момента звезда на очень продолжительный период стабилизируется и проводит в этом состоянии около 90% своей жизни, в зависимости от массы.
Та, звезда солнечной массы остается на главной последовательности около 10 млрд. лет, а звезда на порядок большей массы — лишь 300 млн. лет.
Эволюция звезд с малой массой
Пройдя стационарный период, который соответствует фазе главной последовательности, звезда начинает терять свою стабильность, и дальнейшая судьба у нее может быть различной.
Рассмотрим случай звезды маленькой массы, то есть имеющей массу в 4—5 раз меньше солнечной. Ее особенность такова: в самых глубоких слоях отсутствует конвекция, то есть материя, из которой она состоит, не столь активна, как это, напротив, имеет место у звезд большой массы.
Это означает, что, когда водород в ядре начинает иссякать, реакция не перемещается к более верхним слоям, а продолжает происходить вокруг ядра, где водород очень медленно превращается в гелий.
Однако ядро гелия раскаляется, верхние слои звезды упорядочиваются, перестраивая свою структуру, а светило на диаграмме Герцшпрунга — Рессела медленно покидает главную последовательность. Плотность материи в центре звезды увеличивается, а вещество в ядре вырождается, то есть приобретает особую консистенцию, отличную от консистенции обычного вещества.
Планетарная туманность М27 Гантель: яркий «пузырь» – сброшенная оболочка звезды
Звезда на диаграмме Герцшпрунга — Рессела смещается вправо, а затем вверх, двигаясь в область красных гигантов. Ее размеры значительно увеличиваются, а температура внешних слоев уменьшается благодаря эффекту расширения.
А вот температура ядра снижается, поэтому ядерная реакция уже не может идти из-за того, что температура недостаточна для синтеза гелия. Подобный синтез сопровождается так называемой вспышкой гелия. Звезда на диаграмме продолжает перемещаться вправо, в то место, где на оси абсцисс диаграммы находятся шаровые скопления.
В углеродном ядре температура растет до момента, когда, если звезда обладает достаточной массой, углерод начинает гореть, а затем взрывается. Происходит это или нет, во время последней стадии материя поверхности звезды теряет массу. Эта потеря может происходить на разных фазах или единовременно, когда верхние слои звезды стремятся наружу, образовывая большой шар.
В последнем случае образуется планетарная туманность, то есть сферическая оболочка материи, распространяющаяся в космос Ядро звезды, если при последующих сжатиях и расширениях оно испускает количество материи, превышающее 1,4 солнечной массы, становится белым карликом, из чего можно сделать вывод о ее медленном угасании.
Считается, что, поскольку охлаждение идет очень медленно, с рождения Вселенной ни один белый карлик еще не дошел до термической смерти.
Конечная стадия эволюции звезд, масса которых равна или меньше солнечной – звезда типа белый карлик.
Эволюция звезд с большой массой
У звезд с массой, превышающей солнечную в 5 раз, фазы сжатия и расширения повторяются несколько раз, всегда приводя к образованию тяжелых химических элементов. Во время этих нестабильных фаз звезда претерпевает последовательные изменения видимой звездной величины. В этих случаях говорят о переменной звезде.
Цефеиды представляют собой классический пример звезд, проходящих такие стадии эволюции.
Звезда приобретает каплевидную концентрическую структуру, внутри происходят последние фазы ядерных реакций. В частности, более легкие элементы сгорают в более высоких слоях, где температура ниже, тогда как более тяжелые пылают в центральной части ядра, где температура, напротив, имеет тенденцию к повышению.
У звезд с массой, превышающей солнечную в 5—9 раз, сгорание углерода и кислорода может происходить практически мгновенно. Если масса звезды еще больше, в ядре синтезируются такие элементы, как магний, неон, сера и кремний.
В чрезвычайных случаях термоядерный синтез продолжается до тех пор, пока ядро звезды почти целиком не преобразовывается в железо. В этот момент цепная реакция прекращается, потому что она не может идти одновременно с плавлением железа. Таким образом, оказывается, что звезда израсходовала все свои запасы ядерного топлива и начинает сжиматься.
Нейтронная звезда – конечный продукт эволюции некоторых типов звезд
Если масса звезды не превышает 10 солнечных масс, последние фазы оказываются нестабильными, в разных слоях идут спонтанные ядерные реакции, которые могут привести к вспышке сверхновой. Тем временем взаимная нейтрализация протонов и электронов звездного ядра приводит к тому, что ядро полностью начинает состоять из нейтронов.
После взрыва поверхностные слои звезды разрушаются, а ядро быстро уплотняется, пока не становится несжимаемым. В этом случае сжатие звезды поддерживается. Остатки вещества становятся нейтронной звездой, которая стремительно вращается вокруг собственной оси, и она начинает наблюдаться как пульсар, из-за взрыва перемещающийся по космосу со скоростью в сотни километров в секунду.
Конечная стадия эволюции звезд, масса которых превышает солнечную в 5-9 раз – нейтронная звезда.
Если масса звезды еще больше, давление гравитационных сил настолько велико, что нейтроны ядра вынуждены «пакетироваться» до невообразимой плотности, пока вещество не потеряет свою сущность.
В этом случае речь идет о необратимом гравитационном коллапсе, что приводит к образованию черной дыры.
Конечная стадия эволюции звезд, масса которых превышает солнечную более чем в 10 раз – черная дыра.
Источник