Как происходит эволюция звёзд
Как известно, звезда — это гигантский раскаленный газовый шар, находящийся в состоянии равновесия. Внутри этого шара происходят термоядерные реакции, в результате которых вырабатывается энергия и излучается свет.
Практически любо тело во Вселенной имеет свой жизненный цикл. Собственно говоря, светила не исключения. Они также рождаются и умирают, как и другие тела. Правда, жизненный путь звезд, то есть последовательные изменения в течение всей её жизни, очень долгий. Ниже мы как раз рассмотрим основные этапы эволюции звезд.
Проксима Центавра
Стадии эволюции звезд
Основные этапы эволюции звезд, можно сказать, как у всех в нашей Вселенной.
Из них, главным образом, выделяют:
Но, как и мы отличаемся друг от друга, так и звёзды. Под влиянием разных факторов их жизненный путь у каждого свой. Всё как у людей. Нас даже создала одна природа и сила — сила нашей Вселенной.
Как появляются звёзды
Сначала в космическом пространстве образуются огромные газовые облака. На самом деле, эти холодные разреженные облака межзвёздного газа сжимаются под силой гравитации. Так начинается процесс звёздного формирования.
На его конечном этапе объект называют протозвездой. Вроде уже и не просто облако, но еще и не полноценное светило. Во время сжатия температура таких газовых облаков резко увеличивается. Из-за чего, в свою очередь, внутри них начинают происходить термоядерные реакции синтеза гелия из водорода.
Протозвезда
Главная последовательность
Именно в это время, то есть с началом ядерных процессов, рождается звезда. На данном этапе, чаще всего, она является представителем главной последовательности звезд. Правда, бывают и исключения. Например, субкарлики и коричневые карлики. Они отличаются небольшой массой и слабым ядерным синтезом.
Коричневый карлик
Между прочим стадия главной последовательности самая длинная в жизни светил (около 90% от общей продолжительности). Остальные же их этапы существования длятся значительно меньше. Вероятно, по этой причине во Вселенной преобладают звёзды, находящиеся именно на этой стадии развития. А вот как после неё будет проходить эволюционирование напрямую зависит от массы тела.
Эволюция звезд различной массы
Стоит отметить, что звездные тела имеют разные характеристики.
Низкая масса
Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.
К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода. Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.
Белый карлик
Средняя масса
Как оказалось, звёздная эволюция при средней массе тела проходит по следующему пути.
Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.
Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.
Красный гигант
Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.
Массивные звезды
А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.
Конвективная зона
Как происходит эволюция звезд на последнем этапе
Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.
На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.
Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.
Планетарная туманность Глаз Бога
Жизнь светил с высокой массой
Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.
И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.
Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.
По данным учёных, во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы. Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.
Эволюция звёзд
Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.
Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.
В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.
Источник
Эволюция звезд с точки зрения точной науки и теории относительности
Вселенная представляет собой постоянно меняющийся макромир, где каждый объект, субстанция или материя пребывают в состоянии трансформации и изменений. Эти процессы длятся миллиарды лет. В сравнении с продолжительностью человеческой жизни этот непостижимый умом временной отрезок времени огромен. В масштабах космоса эти изменения достаточно скоротечны. Звезды, которые мы сейчас наблюдаем на ночном небосклоне, были такими же и тысячи лет назад, когда их могли видеть египетские фараоны, однако на самом деле все это время ни на секунду не прекращалось изменение физических характеристик небесных светил. Звезды рождаются, живут и непременно стареют — эволюция звезд идет своим чередом.
Положение звезд созвездия Большая Медведица в разные исторические периоды в интервале 100000 лет назад — наше время и через 100 тыс. лет
Интерпретация эволюции звезд с точки зрения обывателя
Для обывателя космос представляется миром спокойствия и безмолвия. На самом деле Вселенная является гигантской физической лабораторией, где происходят грандиозные преобразования, в ходе которых меняется химический состав, физические характеристики и строение звезд. Жизнь звезды длится до тех пор, пока она светит и отдает тепло. Однако такое блистательное состояние не вечно. За ярким рождением следует период зрелости звезды, который неизбежно заканчивается старением небесного тела и его смертью.
Образование протозвезды из газопылевого облака 5-7 млрд. лет назад
Вся наша информация о звездах сегодня умещается в рамки науки. Термодинамика дает нам объяснение процессов гидростатического и теплового равновесия, в котором пребывает звездная материя. Ядерная и квантовая физика позволяют понять сложный процесс ядерного синтеза, благодаря которому звезда существует, излучая тепло и даря свет окружающему пространству. При рождении звезды формируется гидростатическое и тепловое равновесие, поддерживаемое за счет собственных источников энергии. На закате блистательной звездной карьеры это равновесие нарушается. Наступает черед необратимых процессов, итогом которых становится разрушение звезды или коллапс — грандиозный процесс мгновенной и блестящей смерти небесного светила.
Взрыв сверхновой — яркий финал жизни звезды, родившейся в первые годы существования Вселенной
Изменение физических характеристик звезд обусловлено их массой. На скорость эволюции объектов оказывает влияние их химический состав и в некоторой степени существующие астрофизические параметры — скорость вращения и состояние магнитного поля. Точно говорить о том, как все происходит на самом деле, не представляется возможным ввиду огромной продолжительности описываемых процессов. Скорость эволюции, этапы трансформации зависят от времени рождения звезды и ее месторасположения во Вселенной на момент рождения.
Эволюция звезд с научной точки зрения
Любая звезда зарождается из сгустка холодного межзвездного газа, который под действием внешних и внутренних гравитационных сил сжимается до состояния газового шара. Процесс сжатия газовой субстанции не останавливается ни на мгновение, сопровождаясь колоссальным выделением тепловой энергии. Температура нового образования растет до тех пор, пока не запускается в ход термоядерный синтез. С этого момента сжатие звездной материи прекращается, достигнут баланс между гидростатическим и тепловым состоянием объекта. Вселенная пополнилась новой полноценной звездой.
Главное звездное топливо — атом водорода в результате запущенной термоядерной реакции
В эволюции звезд принципиальное значение имеют их источники тепловой энергии. Улетучивающаяся в пространство с поверхности звезды лучистая и тепловая энергия пополняются за счет охлаждения внутренних слоев небесного светила. Постоянно протекающие термоядерные реакции и гравитационное сжатие в недрах звезды восполняют потерю. Пока в недрах звезды имеется в достаточном количестве ядерное топливо, звезда светится ярким светом и излучает тепло. Как только процесс термоядерного синтеза замедляется или прекращается совсем, для поддержания теплового и термодинамического равновесия запускается в действие механизм внутреннего сжатия звезды. На данном этапе объект уже излучает тепловую энергию, которая видна только в инфракрасном диапазоне.
Исходя из описанных процессов, можно сделать вывод, эволюция звезд представляет собой последовательную смену источников звездной энергии. В современной астрофизике процессы трансформации звезд можно расставить в соответствии с тремя шкалами:
- ядерная временная шкала;
- тепловой отрезок жизни звезды;
- динамический отрезок (финальный) жизни светила.
В каждом отдельном случае рассматриваются процессы, определяющие возраст звезды, ее физические характеристики и разновидность гибели объекта. Ядерная временная шкала интересна до тех пор, пока объект питается за счет собственных источников тепла и излучает энергию, являющуюся продуктом ядерных реакций. Оценка длительности этого этапа вычисляется путем определения количества водорода, которое превратится в процессе термоядерного синтеза в гелий. Чем больше масса звезды, тем больше интенсивность ядерных реакций и соответственно выше светимость объекта.
Размеры и масса различных звезд, начиная от сверхгиганта, заканчивая красным карликом
Тепловая временная шкала определяет этап эволюции, в течение которого звезда расходует всю тепловую энергию. Этот процесс начинается с того момента, когда израсходовались последние запасы водорода и ядерные реакции прекратились. Для поддержания равновесия объекта запускается процесс сжатия. Звездная материя падает к центру. При этом происходит переход кинетической энергии в тепловую энергию, затрачиваемую на поддержание необходимого температурного баланса внутри звезды. Часть энергии улетучивается в космическое пространство.
Учитывая тот факт, что светимость звезд определяется их массой, в момент сжатия объекта его яркость в пространстве не меняется.
Звезда на пути к главной последовательности
Формирование звезды происходит в соответствии с динамической временной шкалой. Звездный газ свободно падает внутрь к центру, увеличивая плотность и давление в недрах будущего объекта. Чем выше плотность в центре газового шара, тем больше температура внутри объекта. С этого момента основной энергией небесного тела становится тепло. Чем больше плотность и выше температура, тем больше давление в недрах будущей звезды. Свободное падение молекул и атомов прекращается, процесс сжатия звездного газа приостанавливается. Такое состояние объекта обычно называют протозвездой. Объект на 90% состоит из молекулярного водорода. При достижении температуры 1800К водород переходит в атомарное состояние. В процессе распада расходуется энергия, повышение температуры замедляется.
Вселенная на 75% состоит из молекулярного водорода, который в процессе формирования протозвезд превращается в атомарный водород — ядерное топливо звезды
В подобном состоянии давление внутри газового шара уменьшается, тем самым давая свободу силе сжатия. Такая последовательность повторяется каждый раз, когда сначала ионизируется весь водород, а затем наступает черед ионизации гелия. При температуре 10⁵ К газ ионизируется полностью, сжатие звезды останавливается, возникает гидростатическое равновесие объекта. Дальнейшая эволюция звезды будет происходить в соответствии с тепловой временной шкалой, гораздо медленнее и последовательнее.
Радиус протозвезды с момента начала формирования сокращается с 100 а.е. до ¼ а.е. Объект пребывает в середине газового облака. В результате аккреции частиц из внешних областей облака звездного газа масса звезды будет постоянно увеличиваться. Следовательно, температура внутри объекта будет расти, сопровождая процесс конвекции — перенос энергии от внутренних слоев звезды к ее внешнему краю. Впоследствии с ростом температуры в недрах небесного тела конвекция сменяется лучистым переносом, сдвигаясь к поверхности звезды. В этом момент светимость объекта стремительно увеличивается, растет и температура поверхностных слоев звездного шара.
Процессы конвекции и лучистый перенос во вновь образовавшейся звезде перед началом реакций термоядерного синтеза
К примеру, для звезд, у которых масса идентична массе нашего Солнца, сжатие протозвездного облака происходит всего за несколько сотен лет. Что касается финальной стадии образования объекта, то конденсация звездной материи растягивается уже на миллионы лет. Солнце движется к главной последовательности достаточно быстро, и этот путь займет сотню миллионов или миллиарды лет. Другими словами, чем больше масса звезды, тем больше промежуток времени, затрачиваемый на формирование полноценной звезды. Звезда с массой в 15М будет двигаться по пути к главной последовательности уже значительно дольше — порядка 60 тыс. лет.
Фаза главной последовательности
Несмотря на то, что некоторые реакции термоядерного синтеза запускаются при более низких температурах, основная фаза водородного горения стартует при температуре в 4 млн. градусов. С этого момента начинается фаза главной последовательности. В дело вступает новая форма воспроизводства звездной энергии — ядерная. Кинетическая энергия, высвобождаемая в процессе сжатия объекта, отходит на второй план. Достигнутое равновесие обеспечивает долгую и спокойную жизнь звезды, оказавшейся в начальной фазе главной последовательности.
Деление и распад атомов водорода в процессе термоядерной реакции, происходящей в недрах звезды
С этого момента наблюдение за жизнью звезды четко привязано к фазе главной последовательности, которая является важной частью эволюции небесных светил. Именно на этом этапе единственным источником звездной энергии является результат горения водорода. Объект пребывает в состоянии равновесия. По мере расхода ядерного топлива меняется только химический состав объекта. Пребывание Солнца в фазе главной последовательности продлится ориентировочно 10 млрд. лет. Столько времени потребуется, чтобы наше родное светило израсходовало весь запас водорода. Что касается массивных звезд, то их эволюция происходит быстрее. Излучая больше энергии, массивная звезда пребывает в фазе главной последовательности всего 10-20 млн. лет.
Менее массивные звезды горят на ночном небосклоне значительно дольше. Так, звезда с массой 0,25М будет пребывать в фазе главной последовательности десятки миллиардов лет.
Диаграмма Герцшпрунга – Рассела, оценивающая взаимосвязь спектра звезд с их светимостью. Точки на диаграмме – месторасположение известных звезд. Стрелки указывают смещение звезд от главной последовательности в фазы гигантов и белых карликов.
Чтобы представить эволюцию звезд, достаточно взглянуть на диаграмму, характеризующую путь небесного светила в главной последовательности. Верхняя часть графика выглядит менее насыщенной объектами, так как именно здесь сосредоточены массивные звезды. Это месторасположение объясняется их непродолжительным жизненным циклом. Из известных на сегодняшний день звезд некоторые имеют массу 70М. Объекты, масса которых превышает верхний предел — 100М, могут вообще не сформироваться.
У небесных светил, масса которых меньше 0,08М, нет возможности преодолеть критическую массу, необходимую для начала термоядерного синтеза и остаются всю свою жизнь холодными. Самые маленькие протозвезды сжимаются и образуют планетоподобные карлики.
Планетоподобный коричневый карлик в сравнении с нормальной звездой (наше Солнце) и планетой Юпитер
В нижней части последовательности сосредоточены объекты, где доминируют звезды с массой равной массе нашего Солнца и немногим больше. Мнимой границей между верхней и нижней части главной последовательности являются объекты, масса которых составляет – 1,5М.
Последующие этапы эволюции звезд
Каждый из вариантов развития состояния звезды определяется ее массой и отрезком времени, в течение которого происходит трансформация звездной материи. Однако Вселенная представляет собой многогранный и сложный механизм, поэтому эволюция звезд может идти другими путями.
Путешествуя по главной последовательности, звезда с массой, примерно равной массе Солнца, имеет три основных варианта маршрута:
- спокойно прожить свою жизнь и мирно почить в бескрайних просторах Вселенной;
- перейти в фазу красного гиганта и медленно стареть;
- перейти в категорию белых карликов, вспыхнуть сверхновой и превратиться в нейтронную звезду.
Возможные варианты эволюции протозвезд в зависимости от времени, химического состав объектов и их массы
После главной последовательности наступает фаза гиганта. К этому времени запасы водорода в недрах звезды полностью заканчиваются, центральная область объекта представляет собой гелиевое ядро, а термоядерные реакция смещаются к поверхности объекта. Под действием термоядерного синтеза оболочка расширяется, а вот масса гелиевого ядра растет. Обычная звезда превращается в красного гиганта.
Фаза гиганта и ее особенности
У звезд с небольшой массой плотность ядра становится колоссальной, превращая звездную материю в вырожденный релятивистский газ. Если масса звезды чуть больше 0,26М, рост давления и температуры приводит к началу синтеза гелия, охватывающего всю центральную область объекта. С этого момента температура звезды стремительно растет. Главная особенность процесса заключается в том, что вырожденный газ не имеет способности расширяться. Под воздействием высокой температуры увеличивается только скорость деления гелия, что сопровождается взрывной реакцией. В такие моменты мы можем наблюдать гелиевую вспышку. Яркость объекта увеличивается в сотни раз, однако агония звезды продолжается. Происходит переход звезды в новое состояние, где все термодинамические процессы происходят в гелиевом ядре и в разряженной внешней оболочке.
Строение звезды главной последовательности солнечного типа и красного гиганта с изотермическим гелиевым ядром и слоевой зоной нуклеосинтеза
Такое состояние является временным и не отличается устойчивостью. Звездная материя постоянно перемешивается, при этом значительная ее часть выбрасывается в окружающее пространство, образуя планетарную туманность. В центре остается горячее ядро, которое называется белым карликом.
Для звезд большой массы перечисленные процессы протекают не так катастрофически. На смену гелиевому горению приходит ядерная реакция деления углерода и кремния. В конце концов звездное ядро превратится в звездное железо. Фаза гиганта определяется массой звезды. Чем больше масса объекта, тем меньше температура в его центре. Этого явно недостаточно для запуска ядерной реакции деления углерода и других элементов.
Судьба белого карлика – нейтронная звезда или черная дыра
Оказавшись в состоянии белого карлика, объект пребывает в крайне неустойчивом состоянии. Прекратившиеся ядерные реакции приводят к падению давления, ядро переходит в состояние коллапса. Энергия, выделяемая в данном случае, расходуется на распад железа до атомов гелия, который дальше распадается на протоны и нейтроны. Запущенный процесс развивается со стремительной скоростью. Коллапс звезды характеризует динамический отрезок шкалы и занимает по времени долю секунды. Возгорание остатков ядерного топлива происходит взрывным образом, освобождая в доли секунды колоссальный объем энергии. Этого вполне достаточно, чтобы взорвать верхние слои объекта. Финальной стадией белого карлика является вспышка сверхновой.
Ядро звезды начинает схлопываться (слева). Схлопывание формирует нейтронную звезду и создает поток энергии во внешние слои звезды (в центре). Энергия, выделяемая в результате сброса внешних слоев звезды при вспышке сверхновой (справа).
Оставшееся сверхплотное ядро будет представлять собой скопление протонов и электронов, которые сталкиваясь друг с другом, образуют нейтроны. Вселенная пополнилась новым объектом — нейтронной звездой. Из-за высокой плотности ядро становится вырожденным, процесс коллапсирования ядра останавливается. Если бы масса звезды была достаточно большой, коллапс мог бы продолжаться до тех пор, пока остатки звездной материи не упадут окончательно в центре объекта, образуя черную дыру.
Объяснение финальной части эволюции звезд
Для нормальных равновесных звезд описанные процессы эволюции маловероятны. Однако существование белых карликов и нейтронных звезд доказывает реальное существование процессов сжатия звездной материи. Незначительное количество подобных объектов во Вселенной свидетельствует о скоротечности их существования. Финальный этап эволюции звезд можно представить в виде последовательной цепочки двух типов:
- нормальная звезда — красный гигант – сброс внешних слоев – белый карлик;
- массивная звезда – красный сверхгигант – взрыв сверхновой – нейтронная звезда или черная дыра – небытие.
Схема эволюции звезд. Варианты продолжения жизни звезд вне главной последовательности.
Объяснить с точки зрения науки происходящие процессы достаточно трудно. Ученые-ядерщики сходятся во мнении, что в случае с финальным этапом эволюции звезд мы имеем дело с усталостью материи. В результате длительного механического, термодинамического воздействия материя меняет свои физические свойства. Усталостью звездной материи, истощенной длительными ядерными реакциями, можно объяснить появление вырожденного электронного газа, его последующую нейтронизацию и аннигиляцию. Если все перечисленные процессы проходят от начала до конца, звездная материя перестает быть физической субстанцией – звезда исчезает в пространстве, не оставляя после себя ничего.
Межзвездные пузыри и газопылевые облака, являющиеся местом рождения звезд, не могут пополняться только за счет исчезнувших и взорвавшихся звезд. Вселенная и галактики находятся в равновесном состоянии. Постоянно происходит потеря массы, плотность межзвездного пространства уменьшается в одной части космического пространства. Следовательно, в другой части Вселенной создаются условия для образования новых звезд. Другими словами, работает схема: если в одном месте убыло определенное количество материи, в другом месте Вселенной такой же объем материи появился в другой форме.
В заключение
Изучая эволюцию звезд, мы приходим к выводу, что Вселенная представляет собой гигантский разряженный раствор, в котором часть материи трансформируется в молекулы водорода, являющегося строительным материалом для звезд. Другая часть растворяется в пространстве, исчезая из сферы материальных ощущений. Черная дыра в этом смысле является местом перехода всего материального в антиматерию. Постичь до конца смысл происходящего достаточно трудно, особенно если при изучении эволюции звезд делать ставку только на законы ядерной, квантовой физики и термодинамики. К изучению данного вопроса следует подключать теорию относительной вероятности, которая допускает искривление пространства, позволяющее трансформироваться одной энергии в другую, одного состояния в другое.
Источник