Меню

Физика темной материи вселенной

Тёмная материя

В 30-х годах ХХ в. швейцарец Ф. Цвикки наблюдал за одним из самых больших галактических скоплений в созвездии Волосы Вероники. Из наблюдений выяснилось, что видимая масса скопления гораздо меньше существующей. Эти данные подтвердились через сорок лет Верой Рубин. Стало понятно, что некая тёмная материя и тёмная энергия наполняют основной массой и галактическое пространство, и любое другое.

Наличие тёмной материи начали предполагать исходя из некоторых наблюдении:

  • Скорости вращения галактик не убывают от центра к краям. Убывание скорости должно происходить, если галактическая масса соответствует видимой.
  • Исследования спутников галактик и шаровых скоплений показывали, что вся масса галактики больше общей массы её звёзд и других составляющих
  • Двойные галактические системы и скопления обладали большей долей тёмной материи
  • В эллиптических галактиках звёздной массы не хватит, чтобы удерживать горячий газ

Из всех наблюдений выявились некоторые свойства таинственного вещества. Оно может взаимодействовать с обычным веществом. Тёмная материя в несколько раз плотнее барионного, и захватывает его частицы посредством гравитационных ям. Вследствие этого происходит свечение.

Что входит в тёмную материю (теории)

  • Барионная тёмная материя. Вполне логично допущение, что эта материя обычная, но плохо взаимодействующая электромагнитным образом. Поэтому обнаружить её не удаётся. Состав этого вещества может быть таким: звёзды-карлики, тёмные гало, нейтронные звёзды, чёрные дыры. Возможно присутствие звёзд кварковых и преонных, но они имеют статус объектов гипотетических. Такой вариант объяснения тёмной материи следует из космологии Большого взрыва. Исходя из этого, получается, что концентрация лёгких элементов должна быть резко отличной от наблюдаемой.
  • Небарионная тёмная материя. Предполагаемых объектов такого вещества достаточно. Но, конечно, всё это – теоретические модели.
  • Лёгкие нейтрино. Эти частицы реально существуют, и этот факт доказан. Считается, что их число во Вселенной аналогично числу фотонов. Хотя они и обладают очень малой массой, но общее число вполне может влиять на динамику пространства. Их масса в диапазоне 10 -2 – 10 -3 эВ. После производства некоторых экспериментов выяснилось, что лёгкие нейтрино не могут быть доминирующей частью тёмной материи.
  • Тяжёлые нейтрино. Эти нейтрино названы стерильными за неспособность слабого взаимодействия. Изученные свойства этих частиц таковы, что они вполне способны составить значительную часть тёмной материи. Параметры их масс — 10 -1 – 10 -4 эВ.
  • Аксионы. Такой тип частиц относится к гипотетическим нейтральным. Они введены в квантовую хромодинамику для решения некоторых проблем. Возможно, что они составляют существенную часть тёмной материи, несмотря на небольшую массу — 10 -5 эВ.
  • Суперсимметричные частицы. Теоретически существует одна такая частица — LSP. Она стабильная, и не участвует в электромагнитных и сильных взаимодействиях . Ею может быть гравитино, фотино, хиггсино и некоторые другие.
  • Космионы. Такие частицы ввели в физику, чтобы разрешить проблемы солнечных нейтрино. Но, после разрешения некоторых теорий, эти частицы, вероятно, исключат из числа претендентов, составляющих тёмную материю.
  • Дефекты пространства-времени. В вакуумном поле Вселенной могли происходить энергетические скачки. Результатом этого могла стать различная выстроенность скалярного поля. При взаимодействии областей, имеющих различную ориентацию, образовывались дефекты разных конфигураций. Объекты, полученные при этом, наделены большой массой. Они вполне могли бы стать доминирующей составляющей тёмной материи. Но пока такие частицы не обнаружены.

Классификация

Начальные стадии развития Вселенной характерны термодинамическим равновесием между частицами тёмной материи и космической плазмы. В какой-то момент началось снижение температуры, из-за чего изменились параметры пролёта частиц в плазме. Все взаимодействия с барионными частицами прекратились. Исходя из значений температуры, при которых это случилось, тёмная материя разделяется на три типа:

  1. Горячая. Такой параметр тёмной материи получился из-за многократного превышения энергии частиц над их массой, случившегося в точке выхода из равновесия.
  2. Холодная. Это частицы, вылетевшие из плазмы в нерелятивистском состоянии, то есть, не имеющие околосветовых скоростей. На роль таких частиц претендует класс вимпов – это массивные, но слабо взаимодействующие частицы. Они тоже пока существуют только в умах учёных. Они имеют приличную массу – больше десятков ГэВ – и остаточную концентрацию, которая способна сбалансировать энергии современной Вселенной. Сила их взаимодействия с барионным веществом позволяет надеяться на обнаружение их в прямом виде. Из теоретических разработок следует, что тёмная материя в любой галактике должна особенно концентрироваться в её центре. Но астрономические наблюдения опровергают это, показывая, что она собирается в гало вокруг галактик и наполняет межгалактические пустоты.
  3. Тёплая. Такой тип материи составляют частицы, имеющие массу, не меньше 1 эВ. На выходе из равновесного состояния такие частицы были релятивистские. Они могли образоваться во время перехода из одной стадии расширения Вселенной в другую. Возможными кандидатами на роль такого типа материи стали нейтрино и LSP-гравитино.
Читайте также:  Инопланетный разум во вселенной

Изучение тёмной материи

Пока известно о трёх методах, позволяющих производить прямые астрономические наблюдения.

  1. Динамический. Изучаются радиальные скорости галактик в их скоплениях при помощи современных приборов.
  2. Газодинамический. Исследуется рентгеновское излучение горячих газов скоплений.
  3. Расчёт слабого гравитационного линзирования. Для этого метода необходимы точные изображения очень удалённых крупнейших скоплений галактик.

Фактическое обнаружение частиц

Все частицы тёмной материи не имеют электрического заряда. Это является главной трудностью в их поиске, существующем в двух вариантах.

  1. Прямой. Используя наземную аппаратуру, проводятся изучения следствий, вытекающих из взаимодействия тёмных частиц с электронами и ядрами атомов.
  2. Косвенный. Отыскиваются возможные потоки вторичных частиц, возникших в результате различных действий, например аннигиляции материи.

Всё усложняющиеся наблюдения учёных за нашим миром, позволяют сделать вывод, что большая часть его нам неведома. 95% всего наполнения Вселенной – интересная загадка, которую ещё предстоит решить.

Источник

Темная материя: что это такое, как мы узнаем, что она есть, и найдем ли мы ее?

Смоделированный вид распределения темной материи в нашей Вселенной

Это звучит как научная фантастика, чтобы сказать, что есть невидимые, необнаружимые вещи вокруг нас, и что у него есть жуткое название темной материи. Но есть много доказательств того, что этот материал очень реален. Так что же такое темная материя? Откуда мы знаем, что оно там? И как ученые его ищут?

Все, что мы видим вокруг – от растений до планет, от камней до звезд, от людей до скопления галактик Персея – состоит из материи. Но все это составляет лишь около 15 процентов от общего количества материи во Вселенной. Подавляющее большинство, то есть оставшиеся 85 процентов, не учитываются – и мы называем это темной материей.

Это название не описывает, как выглядит эта странная вещь — оно получает такое название, потому что не поглощает, не отражает и не преломляет свет, делая его фактически невидимым. И нет ничего, что могло бы объяснить это в Стандартной модели физики элементарных частиц, которая остается нашей лучшей теорией о Вселенной.

Во всем мире предпринимаются огромные усилия, чтобы попытаться раскрыть, что же на самом деле представляет собой темная материя, но возникает естественный вопрос: если мы не можем ее увидеть, почувствовать, услышать, понюхать или попробовать на вкус, как мы узнаем, что она вообще существует?

Откуда мы знаем, что темная материя существует?

Считается, что темная материя пронизывает вселенную — так почему же мы ее еще не нашли? И откуда мы вообще знаем, что она там?

Все, что имеет массу, имеет гравитационное притяжение, и чем больше массы что-то имеет, тем сильнее становится эта сила. Но астрономы постоянно видят, что крупномасштабные объекты, такие как галактики и скопления, ведут себя так, как будто они имеют гораздо большую массу, чем то, что видно.

Швейцарский астрофизик Фриц Цвикки был первым, кто предложил идею темной материи в 1933 году. Он изучал скопление галактик и обнаружил несоответствие: похоже, что их массы не хватает, чтобы объяснить, как быстро движутся эти галактики.

Открытие Цвики было только первым примером явно пропавшей массы. В конце 1970-х астрономы Вера Рубин и Кент Форд наблюдали за нашей соседней галактикой, Андромедой. Дуэт ожидал увидеть объекты на окраинах галактики, вращающиеся медленнее, чем те, что ближе к центру, но это было не так: вместо этого относительные скорости имели тенденцию выравниваться, а объекты на окраинах вращались гораздо быстрее, чем должна была позволить видимая масса.

Еще одним убедительным доказательством является гравитационное линзирование. Поскольку световые лучи искажаются гравитационными полями, огромные массы могут изгибать свет, проходящий мимо более удаленных объектов, и делать эти объекты более крупными или яркими, как космическое увеличительное стекло. В других случаях он может дублировать изображение объекта или даже «воспроизводить» такие события, как сверхновые. Опять же, это линзирование часто происходит сильнее, чем это должно быть возможно из видимой массы объекта в середине.

Поэтому мы знаем, что темная материя есть. Но становится все более странно — Вселенная, как мы знаем, не могла бы существовать без темной материи.

Темная история вселенной

Считается, что темная материя ответственна за крупномасштабную структуру вселенной, которую мы видим сегодня.

Точно так же, как и обычные вещи, темная материя, как полагают, была создана во время Большого взрыва — или, как предполагает одна из теорий, еще до него, в период космологической инфляции. В любом случае структура, которую мы видим сегодня в космосе, без темной материи была бы совсем другой.

Читайте также:  Какая максимальная скорость во вселенной

В первые дни существования Вселенной все было относительно гладко. Мы можем видеть это сегодня на фоне космического микроволнового излучения, которое является излучением, которое было создано приблизительно через 400 000 лет после Большого взрыва. Независимо от того, в каком направлении мы смотрим, это излучение выглядит одинаково.

Но в наше время вселенная далеко не гладкая — она ​​довольно комковатая. Эти комки — то, что мы видим как галактики, скопления, суперкластеры и другие гигантские структуры, и между ними всегда есть относительно пустое пространство. Например, прямо по соседству с Млечным Путем находится «локальная пустота», область непостижимого ничто, простирающаяся на сотни миллионов световых лет.

Так как же эволюционировала Вселенная от супергладких до комковатых скоплений? Это влияние темной материи.

Даже в спокойные ранние дни существования Вселенной в некоторых областях было чуть больше темной материи, чем в других. Эта дополнительная масса означала большую гравитацию, поэтому эти более плотные области притягивали регулярную материю, которая, в свою очередь, притягивала все больше и больше. В конечном счете жара и давление заставили эти очаги материи воспламениться как звезды, что дало толчок образованию планетных систем, галактик и кластеров, которые мы видим сегодня.

Тот факт, что вселенная структурирована так, как она есть, является еще одним свидетельством темной материи. Так что мы знаем, что она там. Но что именно это такое? И как ученые ее ищут?

Охота за темной материей

Эксперимент ABRACADABRA не обнаружил сигналов аксионов с массами от 0,31 до 8,3 наноэлектронвольт

Нелегко искать что-то невидимое и редко взаимодействующее с обычной материей. Итак, ученые начинают с теоретизирования того, что может быть темной материей, а затем разрабатывают и проводят эксперименты для проверки каждой гипотезы. Проблема в том, что темная материя может быть чем угодно.

Частицы темной материи могут быть одними из самых легких во Вселенной, или же они могут иметь массу карликовой планеты, или где угодно между ними. Темная материя может быть «горячей» или «холодной», что не имеет ничего общего с температурой, но описывает, как быстро она движется. Она может существовать в возбужденных состояниях, или иметь более низкую энергию.

«Теоретики очень искусны в том, чтобы придумывать предположения о том, чем может быть темная материя, и большинство из них — очень разумные предположения. Таким образом, они все могут быть правдой в принципе — но не все они будут правдой сразу. И поэтому нам нужно провести эксперименты и астрономические наблюдения, чтобы попытаться сузить возможности и прийти к истине», — говорит нам Раймонд Волкас, профессор теоретической физики частиц в Мельбурнском университете.

Может ли ЦЕРН создать темную материю?

3D-рендеринг Большого адронного коллайдера

Различные типы экспериментов охотятся за различными теоретическими частицами темной материи. Пожалуй, самые известные эксперименты проводятся церном на Большом адронном коллайдере (LHC). Там ученые ищут темную материю, пытаясь создать ее.

В LHC протоны сталкиваются с чрезвычайно высокими энергиями, создавая поток других частиц. Иногда это экзотические частицы, к которым ученые обычно не имеют доступа, и есть надежда, что темная материя может быть среди них.

Опять же, если бы темная материя была произведена в одном из этих столкновений, было бы невозможно непосредственно обнаружить – вместо этого она просто выплыла бы из туннеля, не взаимодействуя с детектором. Но именно это необнаружение и ищут ученые.

В физике законы сохранения энергии и импульса гласят, что в изолированной системе ни энергия, ни импульс не могут быть созданы или разрушены. Они могут менять форму, но сумма останется неизменной. Таким образом, ученые могут вычислить, сколько энергии и импульса поступило до столкновения протона, и измерить, сколько есть после этого. Если чего-то не хватает, это говорит о том, что нечто — как темная материя — ускользнуло и унесло эту энергию или импульс.

Хотя LHC совершил квадриллионы этих столкновений за эти годы, до сих пор не было обнаружено никаких подозрительных сигналов темной материи. Но это помогает сузить широкий спектр возможностей, поэтому будущие поиски могут быть более целенаправленными.

Возможно, ответ, наконец, придет после того, как в 2026 году модернизация LHC будет завершена.

Прямое обнаружение темной материи

Объект XENON1T, слева — резервуар для воды, в котором находится сам инструмент, с плакатом, показывающим, что находится внутри, справа — трехэтажное служебное здание.

В то время как LHC ищет в одной части спектра возможностей, другие эксперименты пытаются обнаружить его по-разному. Эти исследования основываются на возможности того, что темная материя иногда может взаимодействовать с обычной материей другими способами, кроме гравитации.

«LHC чувствителен только к некоторым видам темной материи», — говорит Волкас. «Есть другие разумные кандидаты темной материи, для которых LHC — неправильный эксперимент. Другой способ поиска темной материи — эксперименты по прямому обнаружению. Таким образом, идея заключается в том, что вы берете достаточно большой детектор, вы помещаете его в очень тихую обстановку, свободную от фоновых воздействий, которые могут имитировать ваш сигнал темной материи, а затем вы просто наблюдаете за детектором и ждете, пока ядро ​​атома вздрогнет без видимой причины. Идея состоит в том, что частица темной материи пришла, ударила ядро ​​и заставила его отскочить».

Эта базовая концепция была реализована в различных экспериментах по всему миру. Детекторы обычно размещаются в глубоких подземных камерах, вдали от помех, таких как космические лучи или электромагнитные сигналы. И все они ищут различные гипотетические частицы темной материи, используя в качестве детектора различные вещества.

Читайте также:  Что называют вселенной физика

В экспериментах типа LUX и XENON1T использовались огромные емкости с ксеноном, чтобы попытаться обнаружить кандидата темной материи, известного как слабо взаимодействующая массивная частица (WIMP). Идея заключается в том, что когда эти теоретические WIMP сталкиваются с атомом ксенона в резервуаре, они испускают вспышку света, которую могут обнаружить инструменты.

Другое предложение будет использовать вместо этого сверхтекучий гелий. Логика заключается в том, что гелий имеет гораздо более легкое атомное ядро, чем ксенон, поэтому он должен быть более чувствительным к удару темной материи. Это означает, что он может собирать частицы темной материи, которые в 10 000 раз легче, чем другие эксперименты.

Вариация идеи — это то, что называют «камерой снежного кома». В этом предложении используется резервуар с чистой водой, которая переохлаждается до -20 °С. При таких отрицательных температурах малейшее нарушение молекул воды может привести к вспышке замерзания. Так что если она внезапно замерзнет без видимой причины, это может быть сигналом темной материи. Преимущество заключается в том, что вода намного дешевле и проще, чем ксенон или сверхтекучий гелий.

В других экспериментах все происходит совершенно по-другому.

Аксион — гипотетическая частица

Представление камеры радиообнаружения аксионов.

Одним из ведущих кандидатов на роль темной материи является гипотетическая частица, называемая аксионом. Если бы они существовали, то были бы электрически нейтральными, очень легкими и дрейфовали бы повсюду волнами. Но самое главное, они должны иметь крошечные, но обнаруживаемые взаимодействия с электричеством и магнетизмом – и именно так они могут проявляться.

Эксперимент ABRACADABRA предназначен для поиска магнитного отпечатка аксионами. Идея состоит в том, что из-за того, как работают электромагнитные поля, в самом центре кольцевого магнита не должно быть магнитного поля. Так что, если вы установите его и посмотрите на середину, аксион может заявить о себе, если там возникнет самопроизвольное магнитное поле.

В похожей идее ученые из Стокгольмского университета предложили устройство, которое они называют «Аксион-радио». Детектор также использует мощный магнит, но в центре находится камера, заполненная холодной плазмой, которая содержит лес ультратонких проводов. На этот раз любые аксионы, проходящие через него, создадут небольшое электрическое поле, которое приведет к колебаниям в плазме.

Эксперимент nEDM ищет аксионы по-другому. Здесь нейтроны захватываются и электризуются, затем их спин контролируется. Высокое напряжение должно влиять на их скорость спина на определенной частоте – и если эта частота будет видна, что изменяется с течением времени, это может быть признаком аксионной интерференции.

Нулевые результаты не являются недействительными

Охота на темную материю продолжается

К сожалению, все описанные выше эксперименты либо дали нулевые результаты по темной материи, либо пока являются чисто теоретическими. Но отсутствие сигнала не делает эксперимент полным размытием — нулевые результаты важны, чтобы помочь свести на нет в этом гигантском пространстве возможностей.

Каждый тест ищет кандидатов на темную материю в определенном диапазоне масс и с определенными свойствами, и по мере того, как мы вычеркиваем их из списка, мы все больше приближаемся к истине. И это помогает тому, что многие эксперименты получают обновления в будущем, которые сделают их еще более чувствительными.

Тем временем, часто предлагаются совершенно новые идеи. В последние годы ученые предположили, что темная материя может принимать форму сверхтяжелых гравитино, гексакварков d-star или даже «темной жидкости» с отрицательной массой, пронизывающей Вселенную.

Или, конечно, возможно, это просто математическое недоразумение, и какая-то невидимая и неизвестная сила создает эти странные гравитационные эффекты. Что бы это ни было, охота на темную материю далека от завершения.

Источник

Adblock
detector