Меню

Формирование химических элементов во вселенной

Разнообразие химических элементов во Вселенной

Современная таблица Менделеева содержит 118 химических элементов. Согласно истории Вселенной, после Большого взрыва образовались только четыре элемента: водород, гелий и малое вкрапление лития и бериллия, а также один из изотопов водорода — дейтерий. Вселенной понадобилось почти 13,8 миллиарда лет, чтобы прийти к современному составу. Как получились более тяжëлые элементы?

Часть элементов образуется в процессе эволюции звёзд. Выделение энергии в звезде осуществляется за счёт протекания термоядерных реакций, при которых лёгкие атомные ядра объединяются в более тяжëлые. Здесь есть зависимость от массы, например, в звезде средней массы (такой, как Солнце) на протяжении нескольких миллиардов лет будут идти реакции превращения водорода в гелий, после чего часть гелия идёт на синтез кислорода и углерода, но дальнейшие реакции происходить не будут. Более массивные звёзды способны образовать в своих недрах неон, магний, кремний, серу, никель, кремний, железо. Однако в звёздах невозможно образование элементов тяжелее железа, так как такие реакции требуют дополнительной энергии.

Существуют элементы с атомным номером больше 38, такие как вольфрам, ртуть, свинец, которые образовались в звёздах с массой до трёх масс Солнца. Однако это не термоядерные реакции, которые поддерживают тепловыделение. При высокой температуре внутри звезды ядро атома захватывает нейтрон. Затем в ядре происходит бета-распад, при этом образуется протон, и атомный номер ядра возрастает. Это так называемый s-процесс (от английского slow), который не основной в звезде, скорее протекает как побочный эффект звёздной эволюции.

Какие ещё высокоэнергетические процессы происходят во Вселенной? Например, взрыв сверхновой, при котором за несколько месяцев выделяется энергия, которая выделилась бы на Солнце за 30 миллиардов лет (если бы оно столько существовало). Взрыв сверхновой — это конец жизни звезды, и в его процессе в окружающее пространство выбрасываются элементы, которые синтезировались в звезде. Сверхновая I типа — это взрыв белого карлика, который входит в двойную систему, сверхновая II типа — это взрыв массивной звезды. В первом случае образуются элементы с атомным номером 14-30, а при взрыве сверхновой II-го типа образуется множество элементов, вплоть до циркония с атомным номером 40.

Более тяжёлые элементы образуются в процессе слияния двух нейтронных звёзд. Этот процесс называют «килоновой». При слиянии вещество нагревается до миллиардов градусов, и при этом образуются элементы вплоть до плутония. Каждое подобное событие рождает огромное количество золота и платины, примерно 200 и 500 масс Земли, а также других благородных и радиоактивных металлов. Да, ваши золотые украшения образовались при слиянии нейтронных звëзд.

Существуют ещё так называемые реакции скалывания, в которых образуется литий, бериллий и бор. Это расщепление более тяжёлых элементов (кислород, азот, углерод), которые подвергаются воздействию высокоэнергетических заряженных частиц, например, протонов. Когда частица сталкивается с тяжёлым ядром, она выбивает из него ядро лёгкого элемента. Такие реакции происходят во внешних частях звёзд на раннем этапе эволюции, в верхней атмосфере Земли и на её поверхности, а также в межзвёздной среде.

Все элементы тяжелее плутония синтезировал человек на ускорителях частиц. Они радиоактивны и нестабильны. Часть этих элементов открыли на российском ускорителе Объединенного института ядерных исследований.

Всего на данный момент только 2% изначального водорода и гелия трансформировались в более тяжёлые элементы.

Источник

Формирование химических элементов во вселенной

Для объяснения распространенности в природе различных химических элементов и их изотопов в 1948 году Гамовым была предложена модель Горячей Вселенной. По этой модели все химические элементы образовывались в момент Большого Взрыва. Однако это утверждение впоследствии было опровергнуто. Доказано, что только легкие элементы могли образоваться в момент Большого Взрыва, а более тяжелые возникли в процессах нуклеосинтеза. Эти положения сформулированы в модели Большого Взрыва (см. п. 15).
По модели Большого Взрыва формирование химических элементов началось с первоначального ядерного синтеза легких элементов (Н, D, 3 Не, 4 Не, 7 Li) спустя 100 секунд после Большого Взрыва при температуре Вселенной 10 9 K.
Экспериментальную основу модели составляют расширение Вселенной, наблюдаемое на базе красного смещения, первоначальный синтез элементов и космическое фоновое излучение.
Большим достоинством модели Большого Взрыва является предсказание о распространенности D, Не и Li, отличающихся друг от друга на много порядков.
Экспериментальные данные о распространенности элементов в нашей Галактике показали, что атомов водорода 92%, гелия − 8%, и более тяжелых ядер − 1 атом на 1000, что согласуется с предсказаниями модели Большого Взрыва.

14.2 Ядерный синтез − синтез легких элементов (Н, D, 3 Не, 4 Не, 7 Li) в ранней Вселенной.

  • Распространенность 4 Не или его относительная доля в массе Вселенной Y = 0.23 ±0.02. По крайней мере половина гелия, образованного в результате Большого Взрыва, содержится в межгалактическом пространстве.
  • Первоначальный дейтерий существует только внутри Звезд и быстро превращается в 3 Не.
    Из данных наблюдений получаются следующие ограничения на распространенность дейтерия и Не относительно водорода:

10 -5 ≤ D/H ≤ 2·10 -4 и
1.2·10 -5 ≤ 3 Не/H ≤ 1.5·10 -4 ,

причем наблюдаемое отношение D/H составляет лишь долю ƒ от первоначального значения: D/H = ƒ(D/H)первонач. Поскольку дейтерий быстро превращается в 3 Не, получается следующая оценка для распространенности:

[(D + 3 Не)/H]первонач ≤ 10 -4 .

  • Распространенность 7 Li измерить трудно, однако используются данные по изучению атмосфер звезд и зависимость распространенности 7 Li от эффективной температуры. Оказывается, что, начиная с температуры 5.5·10 3 K, количество 7 Li остается постоянным. Наилучшая оценка средней распространенности 7 Li имеет вид:

7 Li/H = (1.6±0.1)·10 -10 .

  • Распространенность более тяжелых элементов, таких как 9 Be, 10 В и 11 В, меньше на несколько порядков. Так, распространенность 9 Ве/Н -12 .

14.3 Синтез ядер в звездах Главной Последовательности при Т 7 ÷7·10 7 K. Водород перерабатывается в гелий. Возникают ядра легких элементов: 2 Н, 3 Не, 7 Li, 7 Be, 8 Ве, но их мало из-за того, что в дальнейшем они вступают в ядерные реакции, а ядро 8 Be практически мгновенно распадается из-за малого времени жизни (

8 Ве → 4 Не + 4 Не.

Процесс синтеза, казалось, должен был бы прекратиться, но природа нашла обходной путь.
Когда Т > 7·10 7 K, гелий «сгорает», превращаясь в ядра углерода. Происходит тройная гелиевая реакция − «Гелиевая вспышка» − 3α → 12 С, но ее сечение очень мало и процесс образования 12 С идет в два этапа.
Происходит реакция слияния ядер 8 Ве и 4 Не с образованием ядра углерода 12 С* в возбужденном состоянии, которое возможно благодаря наличию у ядра углерода уровня 7.68 МэВ, т.е. происходит реакция:

8 Ве + 4 Не → 12 С* → 12 С + γ.

Существование уровня энергии ядра 12 С (7.68 МэВ) помогает обойти малое время жизни 8 Be. Благодаря наличию этого уровня у ядра 12 С происходит Брейт-Вигнеровский резонанс. Ядро 12 С переходит на возбужденный уровень с энергией ΔW = ΔМ + ε,
где εM = (M8Be − М4Hе)− M12C = 7.4 МэВ, а ε компенсируется за счет кинетической энергии.
Эта реакция была предсказана астрофизиком Хойлом, а затем воспроизведена в лабораторных условиях. Затем начинают идти реакции:

Читайте также:  Самые страшные вещи во вселенной

12 С + 4 Не → 16 0 + γ
16 0 + 4 Не → 20 Ne + γ и так до А

Так нужный уровень ядра 12 С позволил пройти узкое место в термоядерном синтезе элементов.
У ядра 16 О нет таких уровней энергии и реакция образования 16 О идет очень медленно

12 С + 4 Не → 16 0 + γ.

Эти особенности протекания реакций привели к важнейшим следствиям: благодаря им оказалось одинаковое число ядер 12 С и 16 0, что создало благоприятные условия для образования органических молекул, т.е. жизни.
Изменение уровня 12 С на 5% привело бы к катастрофе − дальнейший синтез элементов прекратился бы. Но так как этого не произошло, то образуются ядра с A в диапазоне

14.4 Синтез ядер при Т > 2·10 8 K

Горение углерода начинается, когда температура Т достигает > 2·108 K (такая температура у Красных Гигантов):

12 С+ 12 С → 24 Mg + γ или
23 Na + p → 23 Mg + n

и образуются ядра в диапазоне А

Затем при еще более высокой температуре Т

2·10 8 ÷10 9 K загорается кислород:

16 0+ 16 0 → 32 S + γ;
→ 31 P + p
→ 32 S+ 4 He и т.д.

Это приводит к значениям А

Затем начинается синтез более тяжелых ядер.

Реакция фоторасщепления − 20 Ne(γ,α) 16 O − идет очень быстро (

10 6 лет) и наступает равновесие между синтезом и расщеплением.
Равновесные процессы происходят при температуре Т

4·10 9 K, для которой не существенен кулоновский потенциальный барьер. При такой температуре возможны все экзоэнергетические реакции за счет термоядерного синтеза вплоть до ядер Fe − предельного элемента синтеза.

Все ядра Fe, Co, Сr образуются за счет термоядерного синтеза.

Можно вычислить распространенность ядер во Вселенной, исходя из существования этих процессов.
Сведения о распространенности элементов в природе получаются из спектрального анализа Солнца и Звезд, а также космических лучей. На рис. 99 представлена интенсивность ядер при разных значениях А.


Рис. 99: Распространенность элементов во Вселенной.

Водород Н − самый распространенный элемент во Вселенной. Лития Li, бериллия Be и бора В на 4 порядка меньше соседних ядер и на 8 порядков меньше, чем Н и Не.
Li, Be, В − хорошее горючее, они быстро сгорают уже при Т

10 7 K.
Труднее объяснить, почему они все же существуют − скорее всего, благодаря процессу фрагментации более тяжелых ядер на стадии протозвезды.
В космических лучах ядер Li, Be, В много больше, что также является следствием процессов фрагментации более тяжелых ядер при взаимодействии их с межзвездной средой.
12 С÷ 16 О − результат Гелиевой вспышки и существования резонансного уровня у 12 С и отсутствия такового у 16 О, ядро которого является также дважды магическим. 12 С − полумагическое ядро.
Таким образом, максимум распространенности у ядер железа 56 Fe, a затем − резкий спад.
Для А > 60 синтез энергетически невыгоден.

14.5 Образование ядер тяжелее железа

Доля ядер с А > 90 невелика − 10 -10 от ядер водорода. Процессы образования ядер связаны с побочными реакциями, происходящими в звездах. Таких процессов известно два:
s (slow) − медленный процесс,
г (rapid) − быстрый процесс.
Оба эти процесса связаны с захватом нейтронов т.е. надо, чтобы возникли такие условия, при которых образуется много нейтронов. Нейтроны образуются во всех реакциях горения.

13 С + 4 Не → 16 0 + n − горение гелия,
12 С + 12 С → 23 Mg + n − углеродная вспышка,
16 O + 16 O → 31 S + n − кислородная вспышка,
21 Ne + 4 Не → 24 Mg + n − реакция с α-частицами.

В результате накапливается нейтронный фон и могут протекать s-и r-процессы − захват нейтронов. При захвате нейтронов образуются нейтроно-избыточные ядра, а затем происходит β-распад. Он превращает их в более тяжелые ядра.

56 Fe + n → 57 Fe + γ
57 Fe + n → 58 Fe + γ
β-распады − 58Fe → 58Co → 58Ni и т.д.

s-процесс происходит в звездах Главной последовательности и в Красных Гигантах, где плотность нейтронов ρn

10 10 cм. Процесс идет в течение t

10 5 лет (медленно). Невысокие максимумы на кривой распространенности объясняются s-процессом.
Ядра со временем жизни τβ > 10 5 лет не образуются в s-процессе. Это − Обойденные s-процессом ядра:
116 Cd (у него τ = 3.1·10 19 лет >> 10 5 лет);
122 Sn, 124 Sn.
Число обойденных ядер растет с увеличением ядерного заряда. После Z = 83 s-процесс не работает.
А = 210 − (α-активное ядро).
Происхождение этих ядер объясняется r-процессом.
Быстрый захват (tзахв 20 см -3 , и ядра перегружаются нейтронами и при последующем β-распаде приходят в область тяжелых ядер. Так образуются обойденные ядра: 116 Cd, 120 Sn, 124 Sn.

Заряд ядра возрастает пропорционально числу β-распадов. Быстрый r-процесс был воспроизведен при взрыве водородной бомбы. При этом были обнаружены элементы: эйнштейний 253 Es, фермий 255 Fm.

U + 15n → Es; U + 17n → Fm и β-распад.

В настоящее время в лабораторных условиях синтезированы ядра с Z = 116 и А = 289.

  1. Клапдор-Клайнгротхаус Г.В., Цюбер К. Астрофизика элементарных частиц. -М.: Изд-во УФН, 2000.
  2. Бедняков В.А. О происхождении химических элементов. -М.: Изд-во УФН, 2002.
  3. PHYSICS LETTERS В. Review of Particle Physics, v. 592, iss. 1-4, 15 July 2004.

Источник

Журнал «Все о Космосе»

Как образовались первые химические элементы, в каких уголках Вселенной это произошло. И откуда появились атомы, из которых мы состоим?

Ядра атомов химических элементов состоят из протонов и нейтронов. Самый легкий элемент — водород с ядром всего из одного протона, а во Вселенной есть больше сотни других элементов, и их ядра состоят из большего числа протонов и нейтронов. Нуклеосинтез — это образование ядер элементов, более тяжелых, чем водород. Как это происходило в самом начале Вселенной и где это происходит сейчас?

Как образовались атомные ядра?

Атомное ядро состоит из заряженных протонов (p+) и нейтронов (n0). Самое простое ядро — водород — это один протон (p+). Ядро гелия, или альфа-частица, включает два протона и два нейтрона (2p+ + 2n0). Ядро углерода, из которого состоим мы (12С), содержит по шесть протонов и нейтронов (6p+ + 6n0). Но есть и другие изотопы углерода, например 14С — в нем шесть протонов и восемь нейтронов (6p+ + 8n0).

Химические свойства элемента определяются его зарядом, числом протонов. Если один из нейтронов в ядре разваливается на протон и электрон (этот процесс называется бета-распадом), происходит трансмутация, и один элемент превращается в другой, хотя масса ядра не меняется.

В 1940-е годы многие ученые уже были убеждены, что Вселенная расширяется. Это означало, что когда-то, в первые минуты своего существования, она была гораздо меньше, чем сейчас, а вещество было очень плотным и горячим и состояло только из свободных протонов и нейтронов, то есть не содержало атомных ядер тяжелее водорода (p+). Но в нынешней Вселенной известно больше сотни элементов, включая и те, из которых сделаны мы. В какой-то момент должен был происходить нуклеосинтез — образование более тяжелых ядер из нейтронов и протонов.

Читайте также:  Кто является автором первой модели строения вселенной

Первая модель нуклеосинтеза была опубликована в 1948 году. Ее авторами были Георгий Гамов, задолго до этого эмигрировавший из СССР, и его аспирант Ральф Альфер. Их статья знаменита еще и тем, что Гамов ради шутки вписал в соавторы космолога Ханса Бете — получился список авторов, похожий на αβγ. Они предположили, что ядра всех элементов образуются путем нейтронного захвата. Протоны и нейтроны в молодой Вселенной объединялись между собой, присоединяли новые нейтроны и таким образом создали сразу всю таблицу Менделеева: теоретически из любого ядра можно получить следующее при помощи захвата одного или нескольких нейтронов и последующего бета-распада.

Довольно скоро стало понятно, что схема Альфера и Гамова не работает. Модели Большого взрыва позволяют легко рассчитать скорость реакций в зависимости от времени, температуры и плотности вещества. И оказалось, что первичный нуклеосинтез должен был закончиться очень быстро, в течение первых пятнадцати минут. Это происходит потому, что чем ниже плотность, тем меньше реакций. Чтобы произошла реакция, две частицы должны столкнуться между собой. Темп столкновений падает с уменьшением плотности и температуры, потому что температура — это скорость частиц. Кроме того, свободные нейтроны долго не живут. Если нейтрон не успел войти в состав ядра, он становится протоном. Практически все расчеты показывают, что первичный нуклеосинтез не мог зайти дальше лития-7 (3p+ + 4n0).

В 1957 году, всего через девять лет после теории αβγ, была опубликована фундаментальная работа Бербидж, Бербиджа, Фаулера и Хойла (который, кстати, не верил в теорию Большого взрыва). В ней была сформулирована уже практически современная теория нуклеосинтеза, несравненно более сложная. Сейчас, благодаря новым моделям и многочисленным наблюдениям, мы хорошо представляем себе, откуда во Вселенной взялись тяжелые химические элементы.

Как проходит нуклеосинтез?

Первичный нуклеосинтез закончился через несколько минут после образования Вселенной. К этому моменту 75% массы видимого вещества приходилось на водород и примерно 25% — на гелий. Еще во Вселенной было совсем крошечное — меньше сотой доли процента — количество дейтерия (2H), гелия-3 (3He) и лития (7Li). Практически все более тяжелые элементы образовались в результате ядерных реакций в звездах. И хотя из этих элементов построено все, что мы видим глазами, во вселенских масштабах их даже сейчас, через 13,8 миллиарда лет, не очень много — около 2% атомного вещества.

В звездах есть несколько путей синтеза новых ядер. Базовый путь называется протон-протонным циклом. Он может идти в условиях не очень высокой плотности и температуры и характерен для наименее массивных звезд вроде Солнца (именно благодаря этому процессу оно светит) или еще меньше. Цикл начинается со слияния двух протонов в дейтерий (p+ + n0) с образованием позитрона и нейтрино. Это самая медленная реакция цикла — «бутылочное горлышко», — которая лимитирует скорость синтеза в целом. После этого в результате цепочки реакций дейтерий превращается в устойчивое ядро гелия. Интересная особенность протон-протонного цикла состоит в том, что литий, бериллий и бор — те самые элементы, которые в небольших количествах образовались в результате первичного нуклеосинтеза, — являются его промежуточными продуктами и в звездах сгорают. Поэтому, хотя в целом во Вселенной легких элементов больше, чем тяжелых, именно эти три легких элемента очень редки.

Другой путь нуклеосинтеза требует большей температуры и давления, поэтому он идет в более массивных звездах, хотя бы в два раза массивнее Солнца. Он называется CNO-циклом, и суть его в том, что ядро гелия получается из четырех протонов при их последовательных захватах ядрами различных изотопов углерода, азота и кислорода. Для нас существенно, что для запуска CNO-цикла в среде уже должен присутствовать углерод.

Углерод образуется в звездах в результате тройного альфа-процесса. Сперва две альфа-частицы (ядра гелия) сливаются, образуя ядро бериллия-8, а затем присоединяют еще одну альфа-частицу и превращаются в углерод. Интересно, что ядро бериллия-8 очень неустойчиво. Поскольку первоначальное усложнение ядерного состава происходит путем добавления альфа-частиц, невозможность накопить много ядер бериллия-8 могла бы стать причиной того, что элементы тяжелее гелия просто не образовывались бы.

Но они образуются. Происходит это потому, что у ядер бериллия-8 и углерода-12 очень близкий ядерный резонанс, который позволяет тройному альфа-процессу осуществляться с довольно большой вероятностью. Этот резонанс, близкое совпадение двух чисел, не продиктован никакими физическими законами. Просто наша Вселенная так устроена, что они близки между собой.

Захват альфа-частиц, присоединение ядер гелия, позволяет возникнуть и элементам тяжелее углерода, в первую очередь кислороду, неону, магнию, кремнию, вплоть до никеля-56 (28p+ + 28n0), который далее распадается, образуя железо. Ядра тяжелее железа и никеля в термоядерных реакциях не образуются.

Важный источник тяжелых элементов — сверхновые типа Iа, которые предположительно связаны с термоядерными взрывами на белых карликах в двойных системах. Дело в том, что у белого карлика есть критическая масса — 1,4 массы Солнца. Карлик докритической массы удерживается от коллапса давлением вырожденного газа. Но если каким-то образом превысить эту массу, белый карлик теряет устойчивость, начинает сжиматься, разогреваться — получается очень большая термоядерная бомба. Происходит взрыв сверхновой, который сопровождается очень быстрым термоядерным синтезом. Основным его продуктом становится железо — финальная точка в термоядерном синтезе. Сверхновые этого типа считаются одним из главных источников железа в нашей Вселенной.

В термоядерных реакциях не образуются ядра тяжелее железа. Кроме того, в результате термоядерного синтеза не возникают нечетные элементы: в альфа-частице содержатся два протона, и она увеличивает атомный номер сразу на два. Откуда в таком случае берутся нечетные элементы?

Где происходит синтез тяжелых ядер?

Чтобы увеличить атомный номер на одну единицу, с ядром должно произойти то, что предполагали Альфер и Гамов: оно должно захватить один нейтрон и испустить электрон. Это происходит в два этапа. Сперва ядро захватывает нейтрон, масса увеличивается на единицу, но заряд не увеличивается — химически элемент остается прежним. Затем, если образовавшееся ядро неустойчиво, оно испытывает бета-распад, нейтрон превращается в протон, а заряд вырастает.

Так возникает следующий элемент, четный или нечетный. Элементы от никеля до висмута (209Bi) возникают в результате этого процесса — он называется s-процессом (от английского slow — «медленный»). Неторопливость его связана с тем, что в обычных условиях в теле звезды мало свободных нейтронов. Наряду с медленным существует и быстрый захват нейтронов — r-процесс (rapid). Он происходит в тех случаях, когда ядро успевает до бета-распада захватить несколько нейтронов, и дает возможность для синтеза еще более тяжелых элементов, вплоть до тория и урана (трансурановых элементов во Вселенной практически нет).

Читайте также:  С чего начать знакомство с вселенной halo

Чем больше заряд ядра, тем больше нейтронов требуется, чтобы компенсировать кулоновское отталкивание положительно заряженных протонов. Легкие ядра могут быть стабильными при равном количестве протонов и нейтронов, а тяжелые требуют уже существенно большего числа нейтронов. Например, более или менее устойчивый изотоп урана, уран-238, содержит 92 протона и целых 146 нейтронов. Чтобы синтезировать такие ядра, нейтронов должно быть много. До сих пор нет четко установившегося консенсуса, где это может происходить. Где происходит термоядерный синтез, хорошо известно — в звездах. S-процесс — в больших звездах. А вот где может идти r-процесс, мы наверняка не знаем, хотя возможных объяснений немного.

Первый вариант — это вспышки сверхновых. Когда в конце эволюции массивной звезды начинается сжатие железного ядра, происходит нейтронизация вещества: электроны вдавливаются в протоны, и образуется много нейтронов.

Второй вариант — слияние нейтронных звезд. Представьте, что две нейтронные звезды крутятся друг вокруг друга, излучают гравитационные волны и сближаются. При их слиянии мы снова получим шар, содержащий большое количество нейтронов. Расчеты показывают, что там возможно образование элементов r-процесса, то есть финала Периодической таблицы.

Еще недавно многие сказали бы, что слияние нейтронных звезд — это экзотика. Но в 2017 году впервые зафиксировали импульс всплеска гравитационных волн, совпавший с коротким гамма-всплеском. Мы и раньше предполагали, что короткие гамма-всплески сопровождают слияние нейтронных звезд, но теперь у нас появились убедительные наблюдательные данные. Поскольку по гравитационным волнам можно оценить массы слившихся объектов, мы уверены, что это были именно две нейтронные звезды. Гамма-всплесков наблюдается множество, и теперь, когда два нетривиальных наблюдательных результата совпали в одной точке пространства и времени, у нас появилось мощное указание на то, что слияния нейтронных звезд — это не гипотетический процесс. Они реально происходят и, значит, могут создавать условия для запуска r-процесса.

Где образуются литий, бериллий и бор?

Еще один источник нуклеосинтеза — космические лучи, поток атомных ядер, разогнанных до околосветовых скоростей. Энергии этих частиц огромны, до 1020 электронвольт, и даже больше. Когда ядра сталкиваются между собой на больших скоростях, происходят так называемые реакции скалывания: атомы просто разваливаются на мелкие кусочки. Самое важное последствие реакций скалывания с точки зрения глобального нуклеосинтеза — образование лития, бериллия и бора.

Кривая распространенности химических элементов во Вселенной выглядит так: сверху водород с гелием, а затем, далеко внизу, все остальные элементы. Четных элементов больше, чем нечетных, элементов железного пика некоторый избыток, но чем меньше атомный номер, тем больше таких атомов. Самая заметная аномалия этой кривой — глубокая яма на месте лития, бериллия и бора. Их существенно меньше, чем можно было бы ожидать, исходя из атомной массы.

Дело в том, что в первичном нуклеосинтезе они не образовывались. Разве что литий в мизерных количествах — порядка 10-10 относительно водорода. Бериллия и бора было еще меньше. В звездах эти элементы не образуются, а сгорают в протон-протонном цикле.

Долгое время астрофизики плохо представляли, откуда они берутся. Сейчас предполагается, что они продукт реакций в космических лучах, реакций скалывания. И это подтверждается наблюдениями. В целом состав ядер в космических лучах не отличается от обычной космической пропорции, за единственным исключением: лития, бериллия и бора в них существенно больше, чем где-либо еще. Литий в наших аккумуляторах, бор в борной кислоте, бериллий в изумрудах, — скорее всего, они возникли в межзвездном и околозвездном пространстве.

Из чего состояли древние звезды?

Самые первые звезды состояли, конечно, только из водорода и гелия. Но непонятно, как их можно было бы наблюдать. Теоретически мы видим объекты на больших красных смещениях, то есть можем узнать, какой была наша Вселенная в первые миллиарды лет своего существования. Но на таком расстоянии даже галактики различимы с большим трудом, не то что отдельные звезды. Есть надежда, что это удастся сделать при помощи телескопа Джеймса Уэбба, но пока таких инструментов нет.

Что нам понятно? Такие звезды из водорода и гелия существовали, и у нас есть веские основания полагать, что они были очень массивными, может быть, в тысячи раз более массивными, чем Солнце. В силу большой массы время их жизни было очень небольшим. Они давно взорвались, как сверхновые, и загрязнили Вселенную первыми тяжелыми элементами, и это загрязнение происходило очень эффективно.

У большинства даже самых старых звезд в нашей Галактике, в частности у звезд шаровых скоплений, содержание тяжелых элементов уступает солнечному всего в сто раз.

В нашей Галактике есть несколько звезд с более низким содержанием тяжелых элементов, но это уникальные экземпляры. Рекордные звезды содержат в сто тысяч раз меньше тяжелых элементов, но это две-три звезды на нашу довольно большую галактическую окрестность.

Звезд, состоящих из водорода и гелия, в Млечном Пути нет: они не дожили до нашей эпохи. Благодаря им впоследствии могли появиться и небольшие звезды вроде нашего Солнца, и Земля, и все атомы, из которых мы состоим.

Что еще неизвестно о нуклеосинтезе?

По большому счету, теория нуклеосинтеза уже сложилась. Во всей картине остался один большой вопрос, а именно локализация r-процесса. Ключевое открытие — открытие гравитационных волн — уже сделано, но дьявол кроется в деталях. Теория хорошо описывает внешний облик очень большого числа звезд, но не всех. Существуют звезды с довольно неожиданным поверхностным составом, например звезда Пшибыльского. Сообщалось о наблюдениях в ее спектре очень тяжелых элементов, включая трансурановый америций, который больше нигде не видели. Есть большая группа так называемых химически пекулярных звезд, обладающих повышенным поверхностным содержанием элементов типа бария, ртути, марганца, редких земель. Их существование указывает, что нам недостаточно понять образование элементов — важно разобраться, как они перераспределяются внутри звезд.

Если у какой-то звезды аномальный состав поверхности, это можно объяснить тем, что на нее что-то упало. Например, есть звезды с повышенным содержанием лития. Это странно: литий должен сгорать в термоядерных реакциях. Как это объяснить? На звезду могла упасть планета! Мы знаем, что существуют горячие юпитеры — планеты, вплотную приблизившиеся к своим звездам. Такая планета может оказаться слишком близко, упасть и обогатить атмосферу звезды литием, который не сгорел, потому что в атмосфере не идут термоядерные реакции. Вопросы еще есть, но на них, скорее всего, можно ответить без привлечения нуклеосинтеза.

Дмитрий Вибе.Доктор физико-математических наук, заведующий отделом физики и эволюции звезд Института астрономии РАН

Дорогие друзья! Желаете всегда быть в курсе последних событий во Вселенной? Подпишитесь на рассылку оповещений о новых статьях, нажав на кнопку с колокольчиком в правом нижнем углу экрана ➤ ➤ ➤

Источник

Adblock
detector