Меню

Формула скорости движения планеты вокруг солнца

Формулы радиуса, орбитальной скорости и периода пл

Формулы для расчета радиуса, скорости орбитального движения и периода планет.
При расчетах используются величины:
— радиус орбиты R (при условном круговом движении) в а.е.
— период T (земной год)
— орбитальная скорость V а.е./год

1. Соотношение радиуса и скорости.

Произведение радиуса и квадрата скорости для всех планет одинаково.
R V2 = const
(получается от преобразований третьего закона Кеплера: R3/ T2 const)
R V2 = R V2 — для разных радиусов обрит разных планет и разных радиусов кривизны одной планеты.
производим вычисления:

для Земли — 1 х 6.28 х 6.28 / 1 = 39.434
где V — 2х 3.14 х R / T 2 х 3.14 х 1 : 1 = 6.28 а.е. /год

для Марса 1.532 х 5.07 х 5.07 = 39.379
скорость для марса : 2 х 3.14 х 1.52 : 1.88 = 5, 07 а.е. / год
радиус орбиты Марса взят средний — он колеблется от 1.405 (перигелий) до 1.693 (афелий)

для Юпитера 5.2 х 2.75 х 2.75 = 39.325

скорость 2 х 3.14 х 5.2 : 11.86 = 2.75 а.е. / год

2. Соотношение радиуса и периода.
Для вычисления периода по радиусу орбиты можно использовать следующую формулу:
Радиус, умноженный на корень квадратный из радиуса, дает период.
(Если единица измерения радиуса — а.е.
то период получается в земных годах.)

получается, что для каждой планеты есть некое число, которое умноженное на себя дает радиус орбиты, а умноженное на себя еще раз — дает период.
Для Марса это число примерно 1.232, для Юпитера 2.28, для Урана 4.38,
для Плутона 6.26 , для Венеры 0.85

Получается числовой ряд планет:
Меркурий 0.62 0.387 0.24
Венера 0.85 0.723 0.615
Земля 1 1 1
Марс 1.232 1.52 1.88
Юпитер 2.28 5.2 11.86
Сатурн 3.09 9.58 29.6
Уран 4.38 19.18 84.048
где: первое это некое базовое число; второе радиус; третье период.
зависимость:1 — число, 2- число возведенное в квадрат, 3- возведенное в куб.

Базовое число планеты — соотношение скоростей Земли и планеты.
А соотношение скоростей Земли и планеты получается из соотношения квадратных корней радиусов этих планет.

Теперь, если взять, например, орбитальную скорость Земли за единицу,
то орбитальная скорость Земли относительно скорости Марса 1.2328.
тогда: радиус обриты Марса есть 1.2328 х 1.2328 = 1.52 а.е.
а период орбиты Марса 1.52 = 1.2328 = 1.8739 в земных годах

что в упрощенной записи :
Vз : V м (Vз :V м ) 2 = R (Vз :V м ) 2 х R = T

или n , далее n в квадрате и n в кубе.
где n Vз :V м — отношение скоростей Земли и Марса.

R V2 = const (получается от преобразований третьего закона Кеплера)

4. Квадрат движения.

Для понимания сути движения планет интересно сделать ещё и такое построение.
Все планеты СС одновременно движутся по своим орбитам. Если взять некий общий отрезок времени,то каждая из планет пройдет за это время по орбите своё раcстояние.
Если на основе этого расстояния, построить квадрат, то площадь этого квадрата для каждой планеты будет пропорциональна орбитальной скорости.
И, если площадь этого квадрата умножить на радиус орбиты, то для всех планет получится одинаковое число, выражающее объём.
И получиться некая константа трехмерного пространства.

Это можно выразить так:
Квадрат расстояния пройденной каждой планетой за общую единицу времени обратно пропорционален радиусам их орбит или произведение радиуса обриты на квадрат расстояния для всех планет за общую единицу времени есть величина одинаковая.

5. Период соединения.
Есть ещё одна формула которая позволяет вычислить через какое время произойдет соединение планет планеты.
Т1 х Т2 / Т2-Т1

6. И, конечно, каждая планета за одну единицу времени проходит угол (сектор), который по отношению к земному, обратно пропорционален периодам.

Формулы могут применяться и для расчета параметров движения спутников.

На рисунке: Таблица соотношения параметров планет Солнечной системы относительно Земли.

комментарии к таблице.
Данные для других планет выражен по отношению к параметрам дв. Земли.
Соотношение скоростей мы понимаем, как соотношение путей пройденных планетой по своей орбите за единицу времени. Соотношение скоростей, возведенное в квадрат дает соотношение радиусов, а возведенное в куб — соотношение периодов планет.

Источник

Понятие об угловой скорости: вращение Земли вокруг своей оси и вокруг Солнца

Движение нашей планеты в космическом пространстве можно охарактеризовать двумя типами вращения: вокруг собственной оси и вокруг Солнца. В данной статье рассматривается понятие угловой скорости, приводятся необходимые формулы для вычисления этой величины, а также дается расчет скорости угловой вращения Земли вокруг своей оси и вокруг нашей звезды.

Читайте также:  Солнце угасает или нет

Что такое угловая скорость вращения?

Когда рассматривают перемещение тела в пространстве на большие расстояния, то, как правило, пренебрегают его размерами. В этом случае вводят понятия пути и скорости его движения. Если же решают задачу движения тела вокруг некоторой точки или оси вращения, то пройденный путь всегда равен длине соответствующей окружности, а линейная скорость перемещения заменяется использованием скорости угловой.

Угловая скорость вращения представляет собой угол, на который тело поворачивается вокруг соответствующей оси за единицу времени. Исходя из этого определения, единицей измерения рассматриваемой величины будут радианы в секунду (рад/с). Также можно использовать градусы в секунду (˚/c). Обозначается угловая скорость греческой буквой омега ω.

Основные формулы

Прежде чем переходить к вопросу, чему равна скорость вращения Земли угловая, следует познакомиться с основными формулами, описывающими эту величину.

Как известно, угловая мера всей окружности составляет 360 ˚ или 2×π радиан, где π = 3,1416. Если тело совершает вокруг оси полный оборот за время T, тогда можно записать следующее выражение:

Время T называют периодом обращения, а величина f = 1/T показывает, сколько оборотов тело сделает за единицу времени, то есть характеризует частоту его вращения.

Еще одной важной формулой для угловой скорости является выражение, объединяющее линейную скорость и радиус вращения:

Если проверить единицу измерения ω в этом выражении, то получаем те же радианы в секунду (с -1 ). Формула показывает, что чем меньше расстояние от оси вращения до тела (r), и чем больше его скорость линейная (v), тем больше будет ω.

Из этой формулы можно легко выразить величину v: v = ω×r. Поскольку угловая скорость является величиной постоянной для некоторого рассматриваемого тела, то быстрее будут двигаться те точки, которые находятся дальше от оси вращения.

Рассмотренные формулы и понятия используем для определения скорости угловой вращения Земли вокруг оси и вокруг Солнца.

Вращение нашей планеты вокруг оси

Каждый человек знает, что планета, на которой он живет, вращается вокруг своей оси, причем экваториальная плоскость Земли наклонена под углом 23˚ к плоскости эклиптики.

Как рассчитать угловую скорость вращения вокруг своей оси Земли? Для этого можно воспользоваться совершенно любой из формул, которые приведены были выше. Поскольку мы знаем, что один оборот вокруг оси происходит за 24 часа, то для расчета следует использовать выражение с периодом T. Получаем:

Здесь значение периода T было переведено в секунды. Полученное значение является небольшим.

Представляет интерес рассчитать, с какой линейной скоростью движутся точки на поверхности планеты на широте 0˚ (экватор). Экваториальный радиус Земли равен 6 378 000 м. Подставляя это значение в формулу для скорости, получим:

v = ω×r = 7,27×10 -5 ×6 378 000 = 463,8 м/с = 1670 км/ч.

Полученное значение является большим в сравнении со скоростями, которые мы наблюдаем в жизни. Человек эту скорость не ощущает, поскольку вращается вместе с воздухом и почвой под ногами с одной скоростью, то есть он покоится относительно них.

Рассмотренное вращение Земли приводит не только к возникновению явления дня и ночи, но и к появлению так называемой силы Кориолиса, которая оказывает влияние на некоторые земные процессы, например, изменяет направление ветров.

Вращение Земли по своей орбите

Рассчитаем теперь угловую скорость вращения Земли вокруг Солнца. Для этого воспользуемся следующими данными: точное значение сидерического периода обращения нашей планеты по орбите составляет 365 дней 6 часов 9 минут и 9,7632 секунды, то есть T = 31558149,7632 секунд. Теперь можно воспользоваться формулой:

ω = 2×π/T = 2×3,1416/(31558149,7632) = 1,991×10 -7 рад/с.

То есть угловая орбитальная скорость нашей планеты меньше на 1,5 порядка, чем аналогичная величина для вращения вокруг собственной оси. Вычислим линейную скорость, учитывая, что средний радиус орбиты равен 149 597 871 000 метров:

v = ω×r = 1,991×10 -7 ×149 597 871 000 = 29784,8 м/с = 107 225 км/ч.

С этой огромной скоростью наша планета движется в космическом пространстве вокруг Солнца.

С орбитальным движением планеты и наклоном ее оси связано существование времен года в Северном и Южном полушариях.

Читайте также:  Как правильно яркое солнце греет землю

Источник

Законы Кеплера

Гравитационное взаимодействие проще всего наблюдать на космических объектах, обладающих огромной массой. В окружающей нас повседневности действие гравитации между предметами наблюдать сложно, даже если вес предметов составляет сотни и тысячи килограммов. В микромире силы гравитационного взаимодействия малы настолько, что ими можно пренебречь, потому на первый план выходят другие виды взаимодействий между элементарными частицами и атомами.

Гравитация удерживает живых существ и предметы на поверхности планеты, определяет характер движения планет вокруг Солнца. Именно гравитационное воздействие определяет тот факт, что планеты удерживаются вокруг своих звезд, а спутники не могут уйти в космическое пространство и продолжат движение по орбите вокруг своей планеты.

Закон всемирного тяготения или как его еще называют, теория гравитации, был открыт именно при наблюдении за планетами Солнечной системы.

Если наблюдать за движением небесных тел с Земли, то может показаться, что все эти тела движутся по сложной траектории. Так, например, древний ученый Птолемей, первооткрыватель законов движения планет, поместил Землю в центр вселенной и предположил, что другие планеты и звезды движутся вокруг Земли по большим и малым орбитам.

Рисунок 1 . 24 . 1 . Условное изображение наблюдаемого движения Марса на фоне неподвижных звезд.

Законы движения планет, установленные Птолемеем никем из исследователей не оспаривалась на протяжении 14 веков и только в середине 16 столетия была заменена Коперником на гелиоцентрическую систему, согласно которой все планеты движутся вокруг Солнца.

На основе гелиоцентрической системы объяснить траектории движения небесных тел стало намного проще. На основании трудов Коперника и наблюдений за движением планет астронома из Дании Браге немецкий астроном Кеплер сформулировал три эмпирических закона движения планет в Солнечной системе.

Первый закон Кеплера

Планеты Солнечной системы движутся по эллиптическим орбитам. В одном из фокусов такой орбиты находится Солнце.

Мы проиллюстрировали первый закон Кеплера рисунком. На нем изображена планета, чья масса меньше массы звезды. Звезда находится в одном из фокусов эллипса, по которому движется планета. Точкой Р мы обозначили ближайшую к звезде траекторию, носящая название перигелия. Точка А – это наиболее удаленная от звезды точка траектории, которая называется афелием. Большая ось эллипса располагается между точками афелии и перигелия.

Рисунок 1 . 24 . 2 . Эллиптическая орбита планеты массой m M . a – длина большой полуоси, F и F ‘ – фокусы орбиты.

В Солнечной системе все планеты за исключением Плутона движутся по орбитам, которые близки к круговым.

Второй закон Кеплера, или закон площадей

Радиус-вектор планеты описывает в равные промежутки времени равные площади.

Рисунок 1 . 24 . 3 . Закон площадей – второй закон Кеплера.

Эквивалентом второго закона Кеплера можно считать закон сохранения момента импульса. На рисунке, расположенном выше, изображен вектор импульса тела p → и составляющие его p r → и p ⊥ → . Площадь, заметенная радиус-вектором за малое время Δ t , приближенно равна площади треугольника с основанием r Δ θ и высотой r :

∆ S = 1 2 r 2 ∆ θ или ∆ S ∆ t = 1 2 r 2 ∆ θ ∆ t = 1 2 r 2 ω ; ( ∆ t → 0 ) .

Здесь ω = ∆ θ ∆ t ; ( ∆ t → 0 ) – угловая скорость.

Момент импульса L по абсолютной величине равен произведению модулей векторов p r → и p ⊥ → :

L = r p ⊥ = r ( m v ⊥ ) = m r 2 ω так как v ⊥ = r ω .

Из этих отношений следует:

∆ S ∆ t = L 2 m , ∆ t → 0

Поэтому, если по второму закону Кеплера ∆ S ∆ t = co n s t , то и момент импульса L при движении остается неизменным.

В частности, поскольку скорости планеты в перигелии v P → и афелии v A → направлены перпендикулярно радиус-векторам r P → и r A → из закона сохранения момента импульса следует:

r P v p = r A u A

Третий закон Кеплера

Квадраты периодов обращения планет относятся как кубы больших полуосей их орбит.

Формула третьего закона Кеплера имеет вид:

T 2 a 3 = c o n s t или T 1 2 a 1 3 = T 2 2 a 2 3

Точность, с которой третий закон Кеплера выполняется для всех планет, составляющих Солнечную систему, составляет выше 1 % .

На рисунке изображены две орбиты, по которым небесные тела движутся вокруг звезды. Одна из орбит круговая с радиусом R , а другая – эллиптическая с большой полуосью a . Если R = a , то согласно третьему закону Кеплера периоды обращения планет по таким орбитам будут одинаковы.

Рисунок 1 . 24 . 4 . Круговая и эллиптическая орбиты. При R = a периоды обращения тел по этим орбитам одинаковы.

Рисунок 1 . 24 . 5 . Модель законов Кеплера.

Законы Кеплера очень долго были правилами, полученными эмпирически на основе наблюдений за движением небесных тел. Для того, чтобы получить возможность опираться на них в создании рабочих теорий, не хватало теоретического обоснования законов.

Читайте также:  Его чувства солнце расклад

Таким обоснованием стало открытие закона всемирного тяготения Исааком Ньютоном:

Закон всемирного тяготения:

где M и m – массы Солнца и планеты, r – расстояние между ними, G = 6 , 67 · 10 – 11 Н · м 2 / к г 2 – гравитационная постоянная.

Ньютон был первым из исследователей, кто пришел к выводу о том, что между любыми телами в космосе действуют гравитационные силы, которые и определяют характер движения этих тел. Частным случаем такого взаимодействия является сила тяжести, воздействующая на тела, расположенные на поверхности и вблизи планет.

Для круговых орбит первый и второй закон Кеплера выполняются автоматически, а третий закон утверждает, что T 2

R 3 , где Т – период обращения, R – радиус орбиты. Отсюда можно получить зависимость гравитационной силы от расстояния. При движении планеты по круговой траектории на нее действует сила, которая возникает за счет гравитационного взаимодействия планеты и Солнца:

ω 2 R = 2 π 2 R T 2 .

Свойство консервативности гравитационных сил позволяет ввести понятие потенциальной энергии. Для сил всемирного тяготения удобно потенциальную энергию отсчитывать от бесконечно удаленной точки.

Потенциальная энергия тела массы m , находящегося на расстоянии r от неподвижного тела массы M , равна работе гравитационных сил при перемещении массы m из данной точки в бесконечность.

Математическая процедура вычисления потенциальной энергии тела в гравитационном поле состоит в суммировании работ на малых перемещениях.

Рисунок 1 . 24 . 6 . Вычисление потенциальной энергии тела в гравитационном поле.

Закон всемирного тяготения применим не только к точеным массам, но и к сферически симметричным телам. Работа ∆ A i гравитационной силы F → на малом перемещении ∆ s i → = ∆ r i → есть:

∆ A i = — G M m r i 2 ∆ r i

Полная работа при перемещении тела массой m из начального положения в бесконечность находится суммированием работ Δ A i на малых перемещениях:

В пределе при Δ r i → 0 эта сумма переходит в интеграл. В результате вычислений для потенциальной энергии получается выражение:

E p = A r ∞ = — G M m r

Знак «минус» указывает на то, что гравитационные силы являются силами притяжения.

Если тело находится в гравитационном поле на некотором расстоянии r от центра тяготения и имеет некоторую скорость v , его полная механическая энергия равна

E = E k + E p = m v 2 2 — G M m r = c o n s t

В соответствии с законом сохранения энергии полная энергия тела в гравитационном поле остается неизменной.

Полная энергия может быть положительной и отрицательной, а также равняться нулю. Знак полной энергии определяет характер движения небесного тела (рис. 1 . 24 . 6 ).

При E = E 1 0 тело не может удалиться от центра притяжения на расстояние r > r m a x . В этом случае небесное тело движется по эллиптической орбите (планеты Солнечной системы, кометы).

Рисунок 1 . 24 . 7 . Диаграмма энергий тела массой m в гравитационном поле, создаваемом сферически симметричным телом массой M и радиусом R .

При E = E 2 = 0 тело может удалиться на бесконечность. Скорость тела на бесконечности будет равна нулю. Тело движется по параболической траектории.

При E = E 3 > 0 движение происходит по гиперболической траектории. Тело удаляется на бесконечность, имея запас кинетической энергии.

Первая и вторая космические скорости

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

Первой космической скоростью называется скорость движения спутника по круговой орбите вблизи поверхности Земли.

m v 1 2 R 3 = G M m R 3 2 = g m , отсюда v 1 = G M R 3 = g R 3 = 7 , 9 · 10 3 м / с .

Второй космической скоростью называется минимальная скорость, которую нужно сообщить космическому кораблю у поверхности Земли, чтобы он, преодолев земное притяжение, превратился в искусственный спутник Солнца (искусственная планета). При этом корабль будет удаляться от Земли по параболической траектории.

E = m v 2 2 2 — G M m R 3 = 0 , отсюда v 2 = 2 G M R 3 = 2 g R 3 = 11 , 2 · 10 3 м / с .

Мы проиллюстрировали понятие первой и второй космической скорости рисунком. Если скорость космического корабля равна v 1 = 7 . 9 · 10 3 м / с и направлена параллельно поверхности Земли, то корабль будет двигаться по круговой орбите на небольшой высоте над Землей. При начальных скоростях, превышающих v 1 , но меньших υ 2 = 11 , 2 · 10 3 м / с , орбита корабля будет эллиптической. При начальной скорости v 2 корабль будет двигаться по параболе, а при еще большей начальной скорости – по гиперболе.

Рисунок 1 . 24 . 8 . Космические скорости. Указаны скорости вблизи поверхности Земли. 1 : v = v 1 – круговая траектория; 2 : v 1 v v 2 – эллиптическая траектория; 3 : v = 11 , 1 · 10 3 м / с – сильно вытянутый эллипс; 4 : v = v 2 – параболическая траектория; 5 : v > v 2 – гиперболическая траектория; 6 : траектория Луны.

Источник

Adblock
detector