Происхождение Солнечной системы
презентация к уроку (физика, 11 класс) по теме
Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобныхсистем мы пока не наблюдаем.
Скачать:
Вложение | Размер |
---|---|
proiskhozhdenie_solnechnoy_sistemy.ppt | 2.38 МБ |
Предварительный просмотр:
Подписи к слайдам:
Происхождение Солнечной системы Выполнила: учитель физики ГБОУ СОШ № 262 Потехина Светлана Владимировна
Космогония Космогония — наука, изучающая происхождение и развитие небесных тел, например планет и их спутников, Солнца, звёзд, галактик.
Решение вопроса о происхождении Земли и Солнечной системы в целом значительно затрудняется тем, что других подобных систем мы пока не наблюдаем.
Туманность Туманность темна и непрозрачна, как дым. Зловещей невидимкой медленно ползет она на фоне чёрной бездны, и о ее рваных, размытых очертаниях можно только догадываться по тому, как постепенно тускнеют и гаснут за ней далекие звезды.
Через некоторое время мы обнаруживаем, что туманность медленно поворачивается вокруг своего центра, еле заметно вращается. Мы замечаем так же, что она постепенно съеживается, сжимается, очевидно, уплотняясь при этом. Действует тяготение, собирая к центру частицы туманности. Вращение туманности при этом ускоряется. Если вы хотите понять механику этого явления, вспомните простой земной пример — вращающегося на льду спортсмена-фигуриста. Не делая никакого добавочного толчка, он ускоряет свое вращение лишь тем, что руки, до этого распахнутые в стороны, прижимает к телу. Работает «Закон сохранения количества движения». Идет время. Туманность вращается все быстрее.
Туманность Туманность, продолжая вращаться все быстрее, сплющивается и из шара превращается в плоский диск. Наступает момент, когда на наружных краях диска центробежная сила уравновешивает, а потом и пересиливает тяготение. Клочья туманности начинают отделяться. Центральная часть её продолжает сжиматься, а от внешнего края продолжают отходить все новые и новые клочья, отдельные газо-пылевые облака.
Рождение Солнца И вот туманность приобрела совсем другой вид. В середине величаво вращается огромное темное, чуть сплющенное облако, а вокруг него на разных расстояниях плывут по круговым орбитам, расположенным примерно в одной плоскости, оторвавшиеся от него небольшие «облака-спутники». Проследим за центральным облаком. Оно продолжает уплотняться. Но теперь с силой тяготения начинает бороться новая сила газового давления. Ведь в середине облака накапливается все больше частиц вещества.
Они мечутся, все сильнее ударяя друг друга. На языке физиков — в центре повышаются температура и давление. Сначала там становится тепло, потом жарко. Снаружи мы этого не замечаем: облако огромно и непрозрачно. Тепло наружу не выходит. Но вот что-то внутри произошло! Облако перестало сжиматься. Могучая сила возросшего от нагрева газового давления остановила работу тяготения. Резко пахнуло нестерпимым жаром, как из жерла внезапно открывшейся печи! В глубине черной тучи стали слабо просвечивать рвущиеся наружу клубы тусклого красного пламени. Они всё ближе и ярче. Шар величаво кипит, перемешивая вырвавшийся огонь ядра с черным туманом своих окраин. Испепеляющий жар заставляет нас отпрянуть еще дальне назад. Однако, вырвавшись наружу, горячий газ ослабил противодействие тяготению. Облако снова стало сжиматься. Температура в его центре опять начала расти. Она дошла уже до сотен тысяч градусов!
Температура в центре облака о начала расти. Она дошла уже до сотен тысяч градусов! В этих условиях вещество не может быть даже газообразным. Атомы разваливаются на свои части. Вещество переходит в состояние плазмы. Когда её температура поднимется выше десяти миллионов градусов, она как бы «воспламеняется». Удары частиц друг о друга становятся так сильны, что ядра атомов водорода уже не отскакивают друг от друга, как мячики, а врезаются, вдавливаются друг в друга и сливаются друг с другом. Начинается «ядерная реакция».
Из каждых четырех ядер атомов водорода образуется одно ядро гелия. При этом выделяется огромная энергия. Такое вот «ядерное горение» водорода началось и в недрах солнца. Этот «пожар» теперь уже не остановить. «Плазма» разбушевалась. Газовое давление в центре заработало с удесятеренной силой. Плазма рвется наружу, как пар из котла.
Образование планет Вернемся к спутникам нашего Солнца, к тем обрывкам туманности, которые оторвались от центрального сгустка под действием центробежной силы и начали кружиться вокруг него. Именно здесь создаются условия, способствующие разделению легких и тяжелых частиц туманности. Облака-спутники находятся на очень разных расстояниях от Солнца.
Этап первый — слипание частиц В далеких облаках-спутниках многочисленные молекулы легких газов и редкие легкие пылинки понемногу собираются в огромные рыхлые шары малой плотности. В дальнейшем это планеты группы Юпитера. В облаках-спутниках, близких к Солнцу, тяжелые пылинки слипаются в плотные каменистые комки.
Сотни миллионов лет идет этот процесс слияния мелких частиц в крупные небесные тела. По мере увеличения своих размеров они становятся все более шарообразными. Растет масса возрастает сила тяжести на их поверхности. Верхние слои давят на внутренние. Выступающие части оказываются грузом более тяжелым и постепенно погружаются в толщу нижележащих масс, раздвигая их под собой. В результате вблизи Солнца образуются несколько сравнительно небольших по размеру, но очень плотных, состоящих из очень тяжелого материала, планет земной группы. Среди них Земля.
Этап второй — разогревание Внутри планеты, в смеси с другими оказываются зажатыми, «запертыми» радиоактивные вещества, которые непрерывно выделяют тепло. Тепло накапливается. От этого радиоактивного разогрева начинается размягчение всей толщи планеты. В размягченном виде вещества, в свое время хаотично, бессистемно слепившие её, начинают теперь распределятся по весу. Тяжелые постепенно опускаются к центру, а легкие всплывают все ближе к поверхности.
Постепенно планета приобретает строение, подобное Земле, — в центре, сжатой чудовищным весом навалившихся сверху слоев, тяжелое ядро. Оно окружено «мантией» толстым слоем вещества полегче весом. И наконец, снаружи совсем тонкая, толщиной всего в несколько десятков километров, «кора», состоящая из наиболее легких горных пород.
В происхождении и эволюции Солнечной системы многое остается загадкой. Расчеты возраста солнца дали величину – 5 млрд лет
Источник
Презентация на тему: Гипотезы происхождения Солнечной системы
Солнечная система Петрова Регина, 11 кл. МОУ «СОШ №50», г. Пермь 900igr.net
Что такое солнечная система? Солнце и все тела, обращающиеся вокруг него образуют СОЛНЕЧНУЮ СИСТЕМУ
Из чего состоит солнечная система? В состав солнечной системы входят девять больших планет: МЕРКУРИЙ, ВЕНЕРА, ЗЕМЛЯ, МАРС — это планеты земного типа; ЮПИТЕР, САТУРН, УРАН, НЕПТУН – это планеты гиганты; И ПЛУТОН. Также в состав солнечной системы входят СПУТНИКИ этих планет и МАЛЫЕ ПЛАНЕТЫ, их еще называют астероидами, и КОМЕТЫ.
Гипотезы образования солнечной системы
Гипотеза Бюффона В 1749-м году француз Бюффон в первом томе его книги «Естественная история» предложил одну из первых космогонических гипотез, ставших известных в научном мире после того, как Коперник «поместил» Солнце в центр мира. По его мнению, однажды большая комета столкнулась с Солнцем, благодаря чему произошёл выброс солнечного вещества. Это вещество, разбившись на части, образовало планеты и их спутники. Бюффон не задаётся вопросом о происхождении комет и Солнца. Он считал кометы телами, не принадлежащими Солнечной системе. Кроме того, он, как мы теперь знаем, ошибочно полагает, что Солнце и кометы являются твёрдыми телами.
Гипотеза Канта Через несколько лет после появления во Франции гипотезы Бюффона, а точнее в 1755-м году, в Германии известный философ Эммануил Кант, будучи ещё молодым домашним учителем, выпустил книгу «Всеобщая естественная история и теория неба, или исследование о составе и механическом происхождении всего мироздания, построенное на основе принципов Ньютона». До 1791-го года книга оставалась неизвестной, тем более Кант не поставил своего имени на титульном листе, оставив сочинение анонимным. Кант приписывает Богу лишь создание самой материи и наделение её наблюдаемыми свойствами. Всё остальное развитие Мира происходит без участия Творца. Кант считал, что первоначально материя была сильно разряжена и составляла так называемый Хаос. Подобное начало, надо сказать, встречалось и в древнегреческих философских трудах. Хаос Канта состоял из мелких пылевых частиц (сейчас бы сказали «метеорных»), находящихся в покое. Этот покой мог быть лишь в самом начале, сразу после создания Хаоса Богом. После этого отправного момента материя приходит в движение, подчиняясь законам Ньютона. Более массивные частицы начинают из окружающего их пространства притягивать к себе легкие пылинки. Так в Хаосе появились первые сгущения материи.
Гипотеза Лапласа В 1796-м году впервые увидела свет космогоническая гипотеза французского учёного Лапласа. Во многом её считают схожей с идеей Канта, но исторические исследования говорят нам о том, что Лаплас не был знаком с трудом немецкого философа. Но зато Лаплас знал и критически отзывался о предположениях своего соотечественника Бюффона. Не пытаясь объять необъятное, Лаплас начинает рассказ о рождении Солнечной системы с уже существующей вращающейся газовой туманности, имеющей центральное сгущение — Солнце. Не имея знаний и доказательных наблюдений, Лаплас не стал измышлять способы образования таких туманностей. Важно то, что в согласии с наблюдениями англичанина Вильяма Гершеля, можно было с уверенностью сказать, что подобные туманности существуют. Гершель обнаружил много различных туманностей, в том числе и те, в которые были погружены отдельные звёзды . Туманность представляла собою, по мнению Лапласа, как бы разогретую атмосферу центрального тела. Эта атмосфера вращалась с единой угловой скоростью, то есть каждая частица атмосферы совершала оборот вокруг Солнца за один и тот же промежуток времени.
Гипотеза Джинса Джеймс Хопвуд Джинс, английский учёный, в начале 20-го века изложил очень популярную теорию, потерявшую свою силу лишь во второй половине того же века. Эта теория описывала происхождение Солнечной системы. Джинс сумел разработать проблему гравитационной неустойчивости, благодаря чему научно было обосновано происхождение небесных тел из разреженных сред, какими являются газовые и газопылевые туманности. То, что Лаплас и Кант считали само самой разумеющимся, пусть и не без оснований, Джинс сумел перевести на язык физики и математики. Гипотеза Джинса, главным образом, знаменита тем, что в ней вещество, из которого образовались планеты, появилось весьма интересным способом. По мнению Джинса, в далёком прошлом мимо Солнца на очень близком расстоянии пролетала некая звезда, которая своим гравитационным воздействием вырвала с поверхности нашего светила часть вещества. Это вещество, разбившись, в дальнейшем, на части, образовало планеты. Но сегодня доказано, что подобный выброс не мог стать прародителем планет.
По современным представлениям, тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца и протопланет. Астероиды и Метеориты считаются исходным материалом планет Земной группы (Меркурий, Венера, Земля, и Марс – небольшие по размерам; высокая плотность, малая масса атмосферы, небольшая скорость вращения вокруг своей оси); а кометы и метеоры – планет-гигантов (Юпитер, Сатурн, Уран, Нептун, Плутон – огромные размеры, низкая плотность, плотная атмосфера с H2, Ge и метаном, высокая скорость вращения). Формирование современных оболочек Земли связывается с процессами гравитационной дифференциации первоначального однородного вещества
Источник
Презентация на тему: Гипотезы о происхождении Солнечной системы
Лекция 8 Гипотезы о происхождении Солнечной системы
Общие сведения о нашей галактике. Наша Галактика — Млечный путь — гигантский диск, диаметр которого около 100 тыс. световых лет, а толщина — около 1500 световых лет. Галактика может быть представлена в виде спиральной структуры: туманности и горячие массивные звезды распределены вдоль ветвей спирали.
Наша галактика включает более 200 млрд. звезд разной светимости и цвета. За \»окрестности Солнца\» принято принимать тот объем Галактики, в котором современными средствами возможно можно наблюдать и изучать звезды разных типов. Этот объем состоит примерно из 1,5 тысячи звезд.
Наше Солнце — одна из звезд на периферии Галактики вблизи от ее экваториальной плоскости. Расстояние от Солнца до ядра Галактики составляет около 30 тыс. световых лет. Солнце- желтый карлик, звезда 2-го или 3-го поколения.
Некоторые факты о Солнечной системе Время образования — 4.5-5 млрд. лет назад. В Солнечной системе осталось 8 планет. : планеты земной группы — пояс астероидов — планеты-гиганты — пояс Койпера. Основная масса системы сосредоточена в Солнце (99.9%), но 99% момента количества движения («запаса вращения» системы) связано с движением планет. Все планеты условно делятся на 2 группы: а) Меркурий, Венера, Земля, Марс — планеты небольшого размера с плотностью =3-5.5 г/см3; б) Юпитер, Сатурн, Уран, Нептун — планеты — гиганты с небольшой плотностью =1-2 г/см3; Расстояния планет от Солнца подчиняются эмпирическим формулам и составляют некоторую прогрессию, определяемую правилом Тициуса-Боде. В Солнечной системе имеются метеоры и кометы.
Орбиты всех планет -почти круговые, и все они лежат примерно в плоскости эклиптики (в плоскости Солнечного экватора). Все планеты обращаются вокруг Солнца в одном направлении (совпадающем с направлением вращения Солнца), как и почти все спутники вокруг своих планет.
4.3. Гипотезы происхождения Солнечной системы Объединенная гипотеза Канта-Лапласа: солнечная система возникла из газопылевой туманности. Джеймс Джинс: вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты
Хойл: Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система. Отто Шмидт: Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела – планетезимали.
Современная теория формирования планетной системы в четыре этапа. Первоначальное газопылевое облако достигло заметной плотности и начало сжиматься под действием гравитационных сил. В процессе сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. что привело к уплощению облака и формированию характерного диска. Центральная часть сжимается самостоятельно и превращается в протозвезду. При достижении некоторой пороговой плотности, частицы пыли начали сталкиваться друг с другом, и таким образом кинетическая энергия сжимающегося газопылевого облака привела к росту температуры. Вокруг протозвезды формируется протопланетное облако – пылевой субдиск. Из-за гравитационной неустойчивости в пылевом субдиске образуются планетезимали. Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области запустилась термоядерная реакция горения водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.
Разряженный межзвездный газ стал собираться в облако Вся солнечная система, к которой принадлежат Земля и Луна, возникла из одного большого газопылевого облака
Облако сжималось и вращение его ускорялось Под действием усилившихся при этом центробежных сил облако превратилось в диск Вещество уплотнилось и преврати- лось в кольцо, вращающееся вокруг центра
В центре образовался газовый шар, в котором началась термоядерная реакция
В центре образовался большой сгусток вещества. Из этого сгустка возникло Солнце. Во внешних областях сформировались планеты Постепенно вся планетная система приобрела свой современный вид Из газовых колец возникли планеты — Солнечная система готова
Планета Земля R(Земли)= 6378 км, М — 5.98•1024 кг.
Строение Земной коры Земная кора — внешняя твёрдая оболочка Земли (геосфера). Ниже коры находится мантия, которая отличается составом и физическими свойствами — она более плотная, содержит в основном тугоплавкие элементы. С внешней стороны большая часть коры покрыта гидросферой, а меньшая находится под воздействием атмосферы.
Верхняя часть верхней мантии и земная кора – литосфера. Литосфера состоит из отдельных литосферных плит, которые осуществляют движение по астеносфере — размягченном (возможно, частично и жидком) глубинном слое с небольшой вязкостью.
Толщина земной коры в километрах
Океаническая кора Толщина океанической коры практически не меняется со временем. В разных географических областях толщина океанической коры колеблется в пределах 5-7 километров.
Континентальная кора Верхний слой — осадочные породы. Второй слой – гранит и гнейс. Исследования показывают, что большая часть этих пород образовались около 3 миллиардов лет назад.
Согласно современным представлениям, в составе мантии преобладает сравнительно небольшая группа химических элементов: Si, Mg, Fe, Al, Ca и O. Внутреннее (твердое) и внешнее (жидкое) ядра Земли состоят не только из металлического железа, но также содержат Si, O, S и даже водород. Новые научные данные позволяют говорить о том, что жидкое ядро Земли больше похоже на желе, чем на жидкость (т.е. имеет достаточно большую вязкость). По мере продвижения к центру Земли вязкость увеличивается, и желе переходит в твердое тело, но не кристаллическое (как предполагалось ранее), а аморфное (т.е. внутреннее твердое ядро на основе железа является стеклом).
Главные черты рельефа Земли — континенты и океаны. Континенты возвышаются над ложем океанов в среднем почти на 6 км; с учетом максимальной глубины океанов (11 км.) и высоты гор (9 км.) оказывается, что размах земного рельефа составляет 20 км. Континенты сложены в основном гранитами и гнейсами (горными породами), а ложе океанов состоит из базальтов. Кора континентов намного толще (в среднем 35-40 км.),чем кора океанов (5-7км.).
4.5. Концепция тектоники литосферных плит. Кора современных континентов в основном древняя, в среднем не моложе 2 млрд. лет, а кора океанов нигде не старше 180 млн. лет. Это объясняется тем, что в океанах постоянно происходит процесс обновления коры и именно с этим связано образование основных черт океанского ложа. Для ранней Земли основная энергия поставлялась радиоактивными распадами некоторых элементов. Разогретые потоки вещества из горячих центральных областей Земли за счет конвекции идут к поверхности планеты, а нисходящие потоки уносят вещество поверхности в глубь Земли. Формировавшаяся литосфера оказалась разбитой на отдельные плиты. Замкнутые конвективные потоки создают горизонтальные направления сил, движущих плиты. Вдоль границ литосферных плит расположены зоны повышенной тектонической активности.
Континенты, окружающие Атлантический океан, когда-то были частями единого массива суши (ПАНГЕИ), расколовшегося около 180 млн. лет назад. Гипотезу дрейфа континентов активно пропагандировал немецкий геофизик Альфред Вегенер, который связал вместе совпадение очертаний береговых линий материков (геоморфологические признаки), продолжение геологических пород возрастом более 180 млн. лет за пределы континентов (геологические признаки), совпадение направлений намагниченности предполагаемых разломов (палеомагнитные данные), сведения о распространении геологических видов и климатических зон (палеоботаника и палеоклиматология).
Источник