Меню

Горизонтальный параллакс луны 57 вычислите расстояние от земли до луны если экваториальный радиус

Определение расстояний в Солнечной системе. Горизонтальный параллакс

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом (р) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11).

Из треугольника OAS можно выразить величину — расстояние OS = D:

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57′. Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8″. Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin р ≈ р, если угол р выражен в радианах. В одном радиане содержится 206 265″. Тогда, заменяя sin р на р и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

или (с достаточной точностью)

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации. Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

Источник

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) — Определение расстояний до небесных тел в Солнечной системе и их размеров

вкл. 27 Ноябрь 2016 .

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) — Определение расстояний до небесных тел в Солнечной системе и их размеров

1. Закончите предложения.

Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а. е.), которая равна среднему расстоянию от Земли до Солнца.

1 а.е. = 149 600 000 км

Расстояние до объекта по времени прохождения радиолокационного сигнала можно определить по формуле , где S = 1/2·ct, где S — расстояние до объекта, c — скорость света, t — время прохождения светила.

2. Дайте определения понятиям «параллакс» и «базис»; на рисунке 10.1 покажите эти величины.

Параллакс — угол p, под которым из недоступного места (точка C) будет виден отрезок AB, называемый базисом.

Базис — тщательно измеренное расстояние от точки A (наблюдатель) до какой-либо достигнутой для наблюдения точки B.

3. Как с помощью понятий параллакса и базиса определить расстояние до удаленного недоступного объекта С (рис. 10.1)?

По величине базиса и прилегающим к нему углам треугольника ABC найти расстояние AC. При измерениях на Земле этот метод называют триангуляцией.

4. Угол, под которым со светила S виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом p (рис, 10.2). Определите расстояния: а) до Луны, если ее горизонтальный параллакс p = 57′; б) до Солнца, горизонтальный параллакс которого p = 8,8″.

5. Дополните рисунок 10.3 необходимыми построениями и выведите формулу, позволяющую определить радиус небесного светила (в радиусах Земли), если известны угловой радиус светила p и его горизонтальный параллакс p.

r = D · sin(ρ); R = D · sin(ρ)/sin(p) · R; r = ρ»/p» · R.

6. Решите следующие задачи (при расчетах считайте, что c = 3 · 10 5 км/с, R3 = 6370 км).

1. Радиолокатор зафиксировал отраженный сигнал от пролетающего вблизи Земли астероида через t — 0,667 с. На каком расстоянии от Земли находился в это время астероид?

2. Определите расстояние от Земли до Марса во время великого противостояния, когда его горизонтальный параллакс p = 23,2″.

3. При наблюдении прохождения Меркурия по диску Солнца определили, что его угловой радиус p = 5,5″, а горизонтальный параллакс p = 14,4″. Определите линейный радиус Меркурия.

1. Сигнал, посланный радиолокатором к Венере, возвратился назад через t — 4 мин 36 с. На каком расстоянии в это время находилась Венера в своем нижнем соединении?

Ответ: 41 млн км.

2. На какое расстояние к Земле подлетал астероид Икар, если его горизонтальный параллакс в это время был p = 18,0″?

Ответ: 1,22 млн км.

3. С помощью наблюдений определили, что угловой радиус Марса p = 9,0″, а горизонтальный параллакс p = 16,9″. Определите линейный радиус Марса.

Источник

Определение расстояний в Солнечной системе. Горизонтальный параллакс

Измерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Читайте также:  Убывающая луна окраска волос

Горизонтальным параллаксом (р) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11).

Из треугольника OAS можно выразить величину — расстояние OS = D:

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57′. Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8″. Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin р ≈ р, если угол р выражен в радианах. В одном радиане содержится 206 265″. Тогда, заменяя sin р на р и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

или (с достаточной точностью)

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации. Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

Источник

Дано: Найти: Решение: Ответ: p

Дано: Найти: Решение: Ответ: p? = 57’02’’ D? D? = 206 265‘‘ * R? / p? ? 384 400 км R? = 6378 км D? = 206 265‘‘ * 6378 км / 3422‘‘ D? ? 384 400 км. Задача. Зная горизонтальный параллакс Луны и экваториальный радиус Земли (6378 км), найти расстояние от Земли до Луны. D.

Слайд 5 из презентации «Определение расстояний до тел Солнечной системы и размеров этих небесных тел»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как. ». Скачать всю презентацию «Определение расстояний до тел Солнечной системы и размеров этих небесных тел.ppt» можно в zip-архиве размером 216 КБ.

Солнечная система

«Представления о Солнечной системе» — «Падающая» башня в Пизе. Итальянский физик и астроном Галилео Галилей (1564–1642), впервые направивший на небо телескоп, сделал открытия, подтвердившие учение Коперника. Клавдий Птолемей. Древнегреческий философ Аристотель (384–322 до н. э.) считал, что мир является вечным и неизменным. В России учение Коперника смело поддержал Михаил Васильевич Ломоносов (1711–1765).

«Урок Планеты Солнечной системы» — Итоги работы выводятся на экран и сохраняются в текстовый файл. Еще в древности люди считали Солнце добрым божеством. Размер Солнца. Оборудование. Информа- ционная карта урока. Урок обобщения и систематизации знаний. ФотоФорум. Солнечная система. Выполни задания: Секреты окружающего мира для маленьких натуралистов. «Естествознание».

«Исследование Солнечной системы» — Аннотация. О проекте. Конкретные вопросы. Что входит в состав Солнечной системы? Солнце – центр Солнечной системы и ближайшая к нам звезда (буклет). Солнечная система (презентация). Продолжительность проекта 2 недели. Звёздное небо — Великая книга Природы. Темы исследований. Развивающие цели. Звезда по имени Солнце (презентация).

«Небесные тела Солнечной системы» — Юпитер. Планеты Земной группы. Нептун. Небесные тела. Уран. Владыка пищи. Солнечная система. Сатурн. Венера. Солнце. Основа жизни на Земле. Плутон. Марс. Значение Солнца. Меркурий. Планета.

«Какие планеты в Солнечной системе» — Комета. Нептун. Марс. Есть ли жизнь на Марсе. Юпитер. Змеиная река. Меркурий. Метеориты. Гибель динозавров. Гигантская звезда. Венера. Сатурн. Интересный вопрос. Спутник Земли. Планета Земля. Спутники Юпитера. Планеты Солнечной системы. Уран. Плутон. Каньон Дьявола. Космические тела. Астероид. Земля.

«Характеристика планет Солнечной системы» — Модель транзита экзопланеты. Уран. Солнечная система. Карликовые планеты. Классические планеты. Планеты Земного типа. Юпитер. Крупнейшие планеты. Магнитосфера Меркурия. Газовые гиганты. Схематическое изображение земной магнитосферы. Меркурий. Ледяные гиганты. Земля. Особенности планет. Нептун. 5 карликовых планет.

Всего в теме «Солнечная система» 24 презентации

Источник

Горизонтальный параллакс луны 57 вычислите расстояние от земли до луны если экваториальный радиус

§ 13. О пределение расстояний и размеров тел в С олнечной системе

1. Форма и размеры Земли

П редставление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Читайте также:  Только с тобой стану солнцем стану луной

Считается, что первое достаточно точное определение размеров Земли провёл греческий учёный Эратосфен (276—194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1 ° , а затем длину окружности и величину её радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: ϕ B – ϕ A .

Рис. 3.8. Способ Эратосфена

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане. Измерив высоту Солнца h B (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2 ° . В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените ( h A = 90 ° ). Следовательно, длина дуги составляет 7,2 ° . Расстояние между Сиеной ( A ) и Александрией ( B ) около 5000 греческих стадий — l .

Стадией в Древней Греции считалось расстояние, которое проходит легко вооружённый греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, её введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счёта времени.

Обозначив длину окружности земного шара через L , получим такое выражение:

= ,

откуда следует, что длина окружности земного шара равняется 250 тыс. стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 тыс. км.

Эратосфен ввёл в практику использование терминов «широта» и «долгота». Видимо, появление этих терминов связано с особенностями формы карт того времени: они повторяли по очертаниям побережье Средиземного моря, которое длиннее по направлению запад—восток (по долготе), чем с севера на юг (по широте).

Рис. 3.9. Параллактическое смещение

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — BC ) и двух углов B и C в треугольнике ABC (рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.

Рис. 3.10. Схема триангуляции

Для определения длины дуги используется система треугольников — способ триангуляции , который впервые был применён ещё в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30—40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса AC (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента ( теодолита ) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги AB .

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Её полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1 : 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Читайте также:  Как называют образцы грунта взятые с поверхности луны

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием . По современным данным, оно составляет , или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.

В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передаёт фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида — 1 : 298,25;

средний радиус — 6371,032 км;

длина окружности экватора — 40075,696 км.

2. Определение расстояний в Солнечной системе. Горизонтальный параллакс

И змерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом ( p) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11) .

Рис. 3.11. Горизонтальный параллакс светила

Из треугольника OAS можно выразить величину — расстояние OS = D :

D = ,

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57 ʹ . Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8 ʺ . Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p ≈ p , если угол p выражен в радианах. В одном радиане содержится 206 265 ʺ . Тогда, заменяя sin p на p и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

D = R ,

или (с достаточной точностью)

D = R .

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации . Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

П РимеР РешениЯ задаЧи

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9 ʺ ?

Известно, что параллакс Солнца на расстоянии в 1 а. е. равен 8,8 ʺ .

Тогда, написав формулы для расстояния до Солнца и до Сатурна и поделив их одна на другую, получим:

= .

D 1 = = = 9,8 а. е.

Ответ : D 1 = 9,8 а. е.

3. Определение размеров светил

Рис. 3.12. Угловые размеры светила

З ная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:

D = .

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30 ʹ , а все планеты видны невооружённым глазом как точки, можно воспользоваться соотношением: sin ρ ≈ ρ . Тогда:

D = и D = .

r = R .

Если расстояние D известно, то

где величина ρ выражена в радианах.

П РимеР РешениЯ задаЧи

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30 ʹ ?

Если ρ выразить в радианах, то

d = = 3490 км.

Ответ : d = 3490 км.

В опросы 1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?

У пражнение 11 1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8 ʺ и 57 ʹ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

Источник

Adblock
detector