Горячее рождение вселенной сценарий хаотической инфляции
Одним из главных желаний физиков является построение теории, которая бы естественным образом предсказывала наблюдаемые значения всех параметров фундаментальных частиц. Хочется верить, что правильная теория, описывающая наш мир, должна быть красивой и простой.
Однако большинство параметров элементарных частиц больше похожи на набор случайных чисел, чем на проявления некой скрытой гармонии природы. Например, масса электрона в тысячу раз меньше массы протона, который на два порядка легче W-бозона, масса которого на 17 порядков меньше фундаментальной планковской Между тем, уже достаточно давно было отмечено, что небольшое изменение (в 2-3 раза) массы электрона, постоянной тонкой структуры $\alpha_e$, константы сильного взаимодействия $\alpha_s$ или постоянной тяготения $G= M_p^<-2>$ привело бы к тому, что жизнь того типа, который мы знаем, никогда не смогла бы возникнуть. Добавление или изъятие хотя бы одного из пространственных измерений сделало бы невозможным существование планетных систем. Действительно, при размерности пространства-времени $d > 4$ сила гравитационного взаимодействия падает быстрее, чем $r^<-2>,$ а при $d
Рис. 1. Движение скалярного поля в теории с $V(\phi) =
Если скалярное поле $\phi$ изначально было большим, постоянная Хаббла $H$ также была велика, в соответствии со вторым уравнением. Это означает, что вязкий член был очень большим, и скалярное поле двигалось очень медленно, подобно шарику в вязкой жидкости. Потому на этой стадии плотность энергии скалярного поля, в отличие от подобной величины для обычной материи, оставалась практически постоянной, и расширение вселенной продолжалось с гораздо большей скоростью, чем в старой космологической теории. Благодаря быстрому росту размеров вселенной и медленности движения поля $\phi,$ вскоре после начала данной стадии мы имеем $\ddot\phi \ll 3H\dot\phi,$ $H^2 \gg
Последнее уравнение показывает, что размер вселенной $a(t)$ на данной стадии растет примерно как $e^
Эта стадия экспоненциально-быстрого расширения называется инфляцией. В реалистичных версиях инфляционной теории ее длительность может быть достаточно малой, вплоть до $10^<-35>$ секунд. Как только поле $\phi$ становится достаточно малым, вязкость также уменьшается, инфляция кончается, и скалярное поле начинает осциллировать вблизи минимума $V(\phi).$ Как любое быстро осциллирующее классическое поле, оно теряет энергию за счет рождения пар частиц. Эти частицы, взаимодействуя между собой, приходят в тепловое равновесие с некой температурой $T$. С этого момента соответствующая часть вселенной может быть описана стандартной теорией горячей вселенной.
Главное отличие инфляционной теории от старой космологии становится очевидным, если посчитать размер типичной инфляционной области в конце инфляции. Даже если начальный размер инфляционной вселенной был очень мал (порядка планковского длины $l_P \sim 10^<-33>$ см.), после $10^<-35>$ секунды инфляции вселенная достигает огромных размеров — $l \sim 10^<10^<12>>$ см. Это приводит к тому, что вселенная становится практически плоской и однородной на больших масштабах, так как все неоднородности растягиваются в $10^<10^<12>>$ раз.
Этот фактор является модельно-зависимым, однако во всех реалистичных моделях вселенная после инфляции оказывается на много порядков больше масштаба той части вселенной, которую мы можем видеть ($l \sim 10^<28>$ cm). Это сразу же решает большинство проблем классической космологии (Linde, 1990a).
Рассмотрим вселенную, изначально состоящую из многих областей со случайным образом распределенным скалярным полем $\phi$ (или же ансамбль вселенных с различными величинами поля). В тех частях, где скалярное поле слишком мало, инфляция никогда не начинается, потому они не вносят существенного вклада в объем вселенной. Основную же ее часть занимают те области, в которых скалярное поле изначально было большим. Инфляция таких областей формирует огромные «острова» в первичном хаосе, размер каждого такого «острова» существенно превышает размер наблюдаемой части вселенной. Именно поэтому я называю этот сценарий хаотической инфляцией
Есть существенное отличие данного сценария от старой идеи создания всей вселенной в некий момент времени (Большой Взрыв) практически однородной и нагретой до бесконечно больших температур. В новой модели более не требуются условия изначальной однородности и термодинамического равновесия. Каждая часть вселенной может иметь сингулярное начало (см. в работе (Borde et al, 2001) обсуждение современного состояния вопроса). Однако, в контексте хаотической инфляции это не означает, что вся вселенная как целое возникла из сингулярности. Различные части вселенной могли возникать в разные моменты времени, и потом разрастаться до размеров, значительно превышающих размер вселенной. Наличие начальной сингулярности (или сингулярностей) не означает, что вселенная была создана как целое в результате единственного Большого взрыва. Это означает, что бы более не вправе говорить, что вся вселенная родилась в некий момент времени $t=0$, до которого ее не существовало. Это справедливо для всех вариантов теории хаотической инфляции, даже если не принимать во внимание процесс самовоспроизведения вселенной, обсуждающийся в разделе 4.
Возможность того, что наша однородная часть вселенной возникла из начального хаотического состояния, имеет важное значение для антропного принципа. До сих пор мы рассматривали простейшую инфляционную модель с всего одним скалярным полем. Реалистичные модели элементарных частиц, однако, вводят множество других скалярных полей. Например, в соответствии со стандартной теорией электрослабого взаимодействия, массы всех элементарных частиц зависят от величины хиггсовского скалярного поля $\varphi$ в нашей вселенной. Эта величина определяется положением минимума эффективного потенциала $V(\varphi).$ В простейших моделях $V(\varphi)$ имеет только один минимум. Однако в общем случае этот потенциал может иметь множество различных минимумов. Так, в простейшей суперсимметричной теории, объединяющей слабое, сильное и электромагнитное взаимодействия, эффективный потенциал имеет несколько различных минимумов равной глубины по отношению к двум скалярным полям, $\Phi$ и $\varphi.$ Если эти скалярные поля скатываются в различные минимумы в разных частях вселенной (этот процесс называют спонтанным нарушением симметрии), массы элементарных частиц и законы взаимодействий в них будут различными. Каждая из этих частей может стать экспоненциально большой в результате инфляции. В некоторых из этих частей не будет разницы между сильным, слабым и электромагнитным взаимодействиями, и жизнь нашего типа будет невозможна. Другие же части будут похожи на ту, в которой живем мы (Linde, 1983c).
Это значит, что даже если мы и найдем последнюю Теорию Всего (TOE, Theory of Everything), мы все равно будем не в состоянии однозначно предсказать свойства элементарных частиц в нашей вселенной; вселенная может состоять из различных экспоненциально больших частей с различными свойствами элементарны частиц. Это — важный шаг на пути к доказательству антропного принципа. Следующий же шаг может быть сделан, если мы примем во внимание квантовые флуктуации в процессе инфляции.
Квантовые флуктуации на инфляционной стадии
В соответствии с квантовой теорией поля, пустое пространство не вполне пусто. Оно наполнено квантовыми флуктуациями всех видов физических полей. Длины волн всех квантовых флуктуаций скалярного поля $\phi$ в ходе инфляции растут экспоненциально. Как только длина волны какой-либо флуктуации становится большей, чем $H^<-1>,$ она прекращает осциллировать и ее амплитуда замораживается на некой ненулевой величине $\delta\phi (x)$ из-за большого вязкого члена $3H\dot<\phi>$ в уравнении движения скалярного поля. Амплитуда этой флуктуации в дальнейшем остается практически неизменной, тогда как ее длина волны экспоненциально растет. Таким образом, проявления такой «замороженной» флуктуации равносильны проявлениям классического поля $\delta\phi (x),$ рожденного квантовыми флуктуациями.
Так как в вакууме содержатся флуктуации всех длин волн, инфляция ведет к непрерывному рождению новых возмущений классического поля с длинами волн, большими $H^<-1>$. Средняя амплитуда возмущений, рожденных за интервал времени $H^<-1>$ (за это время вселенная расширяется в $e$ раз) дается выражением $ |\delta\phi(x)| \approx \frac
Эти квантовые флуктуации ответственны за формирование галактик(Mukhanov and Chibisov, 1981; Hawking, 1982; Starobinsky, 1982; Guth and Pi, 1982; Bardeen et al, 1983). Однако если в ходе инфляции постоянная Хаббла достаточно велика, квантовые флуктуации скалярных полей могут приводить не только к формированию галактик, но также и к разделению вселенной на экспоненциально большие области с различными свойствами.
Для примера вновь рассмотрим простейшую суперсимметричную теорию, объединяющую слабое, сильное и электромагнитное взаимодействия. Различные минимумы эффективного потенциала в данной модели разделены расстоянием $\sim 10^ <-3>M_p$. Амплитуды квантовых флуктуаций полей $\phi,$ $\Phi$ и $\varphi$ в начале инфляционной стадии могут достигать $10^ <-1>M_p$. Это значит, что на начальных стадиях инфляции скалярные поля $\Phi$ и $\varphi$ могут свободно перепрыгивать из одного минимума потенциала в другой. Потому, даже если они изначально находились в одном и том же минимуме по всей вселенной, по окончании стадии хаотической инфляции вселенная окажется разделена на множество экспоненциально больших областей, соответствующих всем возможным минимумам эффективного потенциала.(Linde, 1983c, 1984b).
Источник
Инфляционная модель Вселенной
Инфляционная модель Вселенной – научная космологическая теория о законе и состоянии расширения Вселенной на раннем этапе Большого взрыва. В отличие от стандартной модели горячей Вселенной, данная теория предполагает ускоренный период расширения Вселенной на раннем этапе при температуре выше 10 28 Кельвинов.
Общие сведения
Инфляционная модель Вселенной была разработана относительно недавно. Еще в 30-х годах 20 века ученые знали, что наша Вселенная непрестанно расширяется. Важную роль в этом сыграло открытие закона Хаббла, который указывал на данный факт. Ученые поняли, что процессу расширения Вселенной предшествовало свое начало. По этой причине они решили, применяя физико-математические законы, теоретически воссоздать процесс формирования Вселенной и понять, что именно послужило толчком к ее расширению.
Создавая теорию формирования Вселенной, ученые столкнулись с рядом вопросом, например: почему во Вселенной так мало антивещества, если оно должно состоять с веществом в примерно равных пропорциях; как получилось, что температура всех областей Вселенной примерно одинакова, если отдельные ее части никак не могли контактировать друг с другом; почему Вселенная обладает именно такой массой и энергией, которая способна замедлить хаббловское расширение и многое другое. Занимаясь поиском ответов на эти вопросы, ученые вывели стандартную модель горячей Вселенной, которая гласит, что в самом начале своего зарождения Вселенная была очень плотной и горячей, и в ней существовало единое поле взаимодействия между всеми частицами. Впоследствии, когда Вселенная расширилась и остыла, это поле распалось на электромагнитное, гравитационное, сильное и слабое взаимодействие, которое позволили частицам, из которых состояла первобытная Вселенная, объединяться в атомы и другие сложные структуры.
В 1981 году американский ученый Алан Гут понял, что выделение сильных взаимодействий из единого поля, а также фазовый переход первобытного вещества Вселенной из одного состояния в другое произошел примерно через 10 –35 секунды после рождения Вселенной. Этот период можно условно назвать «первоначальной кристаллизацией Вселенной» или «экстренным расширением Вселенной». В чем-то этот процесс напоминает процедуру замерзания воды и превращения ее в лед. Всем известно, что вода при замерзании расширяется. Алану Гут предположил, что на самом начальном этапе формирования Вселенной произошло ее скачкообразное расширение, благодаря которому Вселенная за крохотные доли секунды расширилась в 50 раз. Свою теорию ученый назвал инфляционной моделью Вселенной (инфляция от англ. Inflate – раздувать, накачивать). При помощи этой модели можно объяснить, почему Вселенная обладает такой массой и энергией, которая позволяет замедлить хаббловское расширение, а также, почему температура всех областей нашей Вселенной примерно одинакова.
Проблема крупномасштабной однородности и изотропности Вселенной
Распределение энергии во Вселенной
Хаббловское расстояние совпадает с размерами наблюдаемой нами Вселенной. Это говорит нам о том, что из-за конечности возраста нашей Вселенной и скорости света можно наблюдать сейчас только те области Вселенной, которые находятся на равном или меньшем расстоянии горизонта наблюдений.
В планковскую эпоху Большого взрыва (самая ранняя стадия развития Вселенной) в наблюдаемой Вселенной состояло около 10 90 областей, взаимодействие и причинная связь между которыми отсутствовала. Схожесть начальных условий в таком огромном количестве областей считалась маловероятной. Даже в более поздние периоды Большого взрыва проблема схожести начальных условий в несвязанных причинно областях остается.
Материалы по теме
Коротко о теории струн
Например, в эпоху рекомбинации приходящие к нам с близких направлений фотоны реликтового излучения должны были содействовать с областями первичной плазмы, между которыми за все время их существования не успела установиться причинная связь. Другими словами, можно было рассчитывать на значительную анизотропность реликтового излучения, но наблюдения показывают, что оно изотропно, причем в достаточно высокой степени.
Проблема плоской Вселенной
Согласно последним научным данным плоскость Вселенной весьма близка к критической плоскости, при которой кривизна пространства равна нулю. Согласно научной гипотезе, отклонение плотности Вселенной от критической плотности должно увеличиваться в процессе течения времени. Для объяснения пространственной кривизны Вселенной в рамках стандартной модели, необходимо принять отклонение ее плотности в планковскую эпоху.
Говоря максимально простым языком, стандартная модель горячей Вселенной не способна объяснить плоскость Вселенной, в то время, как инфляционная модель Вселенной позволяет это сделать. Ее постулаты гласят, что неважно насколько сильно было искривлено пространство нашей Вселенной в миг ее инфляционного расширения – по окончанию этого расширения ее пространство оказалось почти полностью прямым. Кривизна пространства, согласно общей теории относительности, зависит от количества энергии и материи, которые в нем находятся. По этой причине в нашей Вселенной находится достаточно материи, чтобы уравновесить хаббловское расширение.
Проблема крупномасштабной структуры Вселенной
Крупномасштабная структура Вселенной
Иерархическая модель крупномасштабного распределения материи во Вселенной представляет собой следующую вертикаль: сверхскопления галактик – скопление галактик – галактики.
Материалы по теме
Войды – огромные пустоты Вселенной
Для образования такой четкой иерархической структуры из малых флуктуаций плотности, нужна определенная форма спектра и амплитуда первичных возмущений. Все эти параметры приходится принимать в рамках стандартной модели.
Критика инфляционной теории
Главным критиком инфляционной модели Вселенной выступает английский астрофизик, сэр Роджер Пенроуз. Он утверждает, что хотя инфляционная модель Вселенной является весьма успешной и интересной теорией, однако у нее есть некоторые недостатки. К примеру, данная теория не предлагает никаких веских фундаментальных обоснований того, что на доинфляционной стадии возмущения плотности должны быть настолько малыми, чтобы после инфляции возникла наблюдаемая степень однородности Вселенной.
Еще одно слабое место инфляционной теории, по словам ученого, это ее объяснение пространственной кривизны. Согласно научной гипотезе, во время инфляции пространственная кривизна сильно уменьшается, однако в то же время ничто не мешало пространственной кривизне иметь настолько большое значение, чтобы проявлять себя и на современном этапе развития Вселенной.
Экспериментальные подтверждения инфляционной модели Вселенной
Карта реликтового излучения
Не так давно, в 2014 году был проведен эксперимент, по результатам которого ученым удалось получить косвенные подтверждения инфляционной модели Вселенной. Этим подтверждением в частности послужила поляризация реликтового излучения. Ученые посчитали, что она могла быть вызвана первичными гравитационными колебаниями.
Однако в более позднем опубликованном результате схожего эксперимента от 19 сентября 2014 года, который был проведен коллективом других астрономов при помощи космической обсерватории-спутника «Планк» показал, что результат вышеназванного эксперимента можно отнести к влиянию не первичных гравитационных колебаний, а межгалактической пыли. Таким образом, ученым еще предстоит доказать на опыте инфляционную модель Вселенной.
‘ alt=»yH5BAEAAAAALAAAAAABAAEAAAIBRAA7 — Инфляционная модель Вселенной» title=»Инфляционная модель Вселенной»>
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Источник