Что такое гравитация и как она работает?
Латинское слово gravitas означает вес и дает нам слово «гравитация», которое является силой, которая дает объектам их вес. Это также корень слова «гравитировать», которое описывает то, что делает гравитация: заставляет объекты притягиваться друг к другу. Это то, что удерживает людей на Земле и держит Землю на своем месте в Солнечной системе. Хотя древние философы задавались вопросом, почему объекты падали столетия назад, у ученых до сих пор остаются вопросы о том, как действует гравитация и сегодня.
Что такое гравитация?
Проще говоря, гравитация — это сила, которая притягивает два тела друг к другу. Все, что имеет материю, то есть все, к чему можно прикоснуться, имеет гравитационное притяжение. Это включает в себя яблоки, людей и Землю. Несмотря на термин невесомость, невозможно избежать гравитационных сил. Космонавты все еще подвержены воздействию гравитации, но они движутся так быстро, что не приближаются к центру планеты и находятся в постоянном состоянии свободного падения.
Гравитация, масса и расстояние
Степень гравитации любого объекта пропорциональна массе объекта. Объекты с большей массой имеют большую гравитацию. Поскольку Земля является самым крупным и ближайшим объектом вокруг, все притягивается к ее гравитационному притяжению, а это означает, что яблоки падают на землю, а не притягиваются к голове человека.
Расстояние также влияет на гравитацию. Если объект находится далеко, то гравитационное притяжение слабее. Например, в космосе есть точка, где притяжение Марса становится сильнее притяжения Земли.
Фундаментальные силы во Вселенной
По мнению физиков, четыре фундаментальные силы Вселенной — это гравитация, электромагнитные, слабые и сильные взаимодействия. Силы изменяют движение объекта, и эти четыре фундаментальные силы определяют, как все во Вселенной взаимодействует. Гравитация — самая слабая сила, но она наиболее легко видима и оказывает наибольшее влияние на крупномасштабном уровне. Это не только причина, по которой люди могут ходить по Земле, но и удерживает планеты, вращающиеся по орбите вокруг Солнца, и Солнце на своем месте в галактике.
Древняя история гравитационной теории
Древние греки верили, что сила, притягивающая предметы к Земле, была внутренней тяжестью, а не внешней силой. Тяжелые люди естественным образом притягиваются к Земле, в то время как легкие языки пламени прыгают к небу. Напротив, индийские ученые, в частности Арьябхата, говорили, что некая сила удерживает объекты на Земле, хотя его теория помещает Землю в центр вселенной. В 600-х годах н. э. математик Брахмагупта был первым, кто описал гравитацию как силу притяжения.
Гравитационная теория эпохи Возрождения
Говорят, что Галилей бросал предметы со стороны падающей Пизанской башни, чтобы наблюдать, что происходит, когда они падают. Независимо от того, была ли задействована башня или нет, Галилей обнаружил, что все объекты имеют тенденцию ускоряться с одинаковой скоростью при падении. Другие ученые основывались на своей работе, а Гримальди и Риччоли вычислили гравитационную постоянную. Другие работы по гравитации сосредоточены вокруг астрономии и Иоганна Кеплера, построенного на этих теориях для расчета орбит известных планет.
Закон всемирного тяготения
Другая легенда о гравитации гласит, что Исаак Ньютон был поражен падающим яблоком и понял, что должна быть сила, заставляющая вещи падать на землю. Он написал уравнение, в котором описывается сила гравитации, показывающее, что чем массивнее объекты, тем больше сила притяжения между ними. Оно также показало, что чем дальше они находятся, тем слабее тяга. Некоторые планеты двигались так, что не могли объяснить это уравнение, но по большей части оно существовало веками.
Эйнштейн и общая теория относительности
Теория общей относительности Эйнштейна изменила взгляд физиков на гравитацию. Считается, что воздействие гравитации вызвано не силой, а кривой в пространстве-времени, которая возникает вокруг крупных объектов, а скорее похожа на шар для боулинга, сидящий на батуте. Эта теория объяснила странную орбиту Меркурия и установила ньютоновскую гравитацию на его голову, поскольку гравитация больше не была силой, а следствием геометрии.
Что делает гравитация?
Гравитация оказывает несколько воздействий на реальный мир. Помимо того, что гравитация не только удерживает предметы на земле, но и придает им вес. Объекты меньше весят на планетах с меньшей гравитационной тягой. Гравитация Луны — это сила, которая создает океанские приливы. Гравитация также удерживает Землю на комфортном расстоянии от Солнца и удерживает атмосферу на месте, давая всем живым существам воздух, пригодный для дыхания, и защищая их от солнечного излучения.
Гравитация и сотворение Вселенной.
Гравитация также является существенным элементом в создании Вселенной. Газы, существующие во Вселенной, притягиваются друг к другу под действием гравитации и объединяются в крупные объекты, в том числе звезды и планеты. Некоторые исследователи считают, что именно гравитация стабилизировала частицы после Большого взрыва, остановив коллапс Вселенной. Гравитация притягивает солнечные системы друг к другу, образуя галактики, и как таковая является основополагающим элементом в создании Вселенной.
Гравитация и научные исследования
Научные исследования в области гравитации будут продолжаться и в будущем. Теория относительности объясняет некоторые аномалии в ньютоновской гравитации; во Вселенной все еще есть тайны, которые ученые не могут объяснить. Гравитация не вписывается в теорию квантовых полей, и ученые до сих пор исследуют, как она соединяется с другими фундаментальными силами. Исследования гравитации также имеют более практическое применение. Космические аппараты НАСА отслеживают изменения гравитации Земли, что помогает ученым отслеживать изменения уровня моря и земной коры.
Источник
Гравитация на земле и в космосе
Кузнецов А.И., Кузнецов А. Р.
До Ньютона ученые считали, что имеются два типа гравитации: земная гравитация (действующая на Земле) и небесная гравитация (действующая на небесах). Ньютон объединил эти два типа гравитации, сформулировав закон всемирного тяготения. Согласно закону, все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от химических и физических свойств тел, от состояния их движения, от свойств среды, где находятся тела. С тех пор понятие гравитации прочно вошло в физику, как один из видов взаимодействия тел или частиц, оказывающих влияние на их расположение или перемещение друг относительно друга.
Поскольку первоначально экспериментальные исследования гравитации заключались в изучении скорости падения тел на Землю с относительно небольшой высоты, а средства измерения имели относительно низкую точность, то результаты часто не отражали фактической сущности процесса. В частности, это касается утверждения об отсутствии влияния плотности тела на скорость его падения. Под действием признанного авторитета Ньютона основная масса ученых того и последующего времени не подвергала сомнению правильность этого закона, хотя отдельные высказывания против него были. Однако, никаких конкретных предложений по его опровержению, уточнению или дополнению долгое время не было высказано.
Одной из главных проблем до настоящего времени считается отсутствие приемлемого объяснения природы и физической сущности этого взаимодействия, которое существует только в виде математической формулы. Ни одна из выдвинутых гипотез не в состоянии была объяснить механизм тяготения.
Одна из наиболее популярных гипотез была выдвинута в 1690 году математиком Никола Фатио де Дюилье и в 1756 Жоржем Луи Ле Саж в Женеве. Они предложили простую кинетическую теорию гравитации, которая дала механическое объяснение уравнению силы Ньютона. Из-за того, что работа Фатио оставалась длительное время неопубликованной, а описана Ле Сажем чаще встречается название «гравитация Лесажа» [1, с. 1].
Гипотеза утверждает, что сила гравитации — это результат движения крошечных частиц, двигающихся во Вселенной с одинаково высокой скоростью и интенсивностью во всех направлениях. Изолированный объект A ударяется частицами со всех сторон, в результате чего он подвергается давлению вовнутрь объекта, но не подвергается направленной силе. Однако, в случае присутствия второго объекта B, часть частиц, которые иначе бы ударили по объекту A со стороны B, перехватывается, таким образом объект B работает как экран, т.е. с направления В объект A ударит меньше частиц, чем с противоположного направления. Аналогично, объект B будет ударен меньшим количеством частиц со стороны A, по сравнению с противоположной стороной. То есть, можно сказать, что объекты A и B «экранируют» друг друга, и оба тела прижимаются друг к другу результирующим дисбалансом сил. Таким образом, кажущееся притяжение между телами в данной теории на самом деле является уменьшенным давлением на тело со стороны других тел [1, с. 1].
Сам Ньютон отмечал, что эта теория является лучшим объяснением гравитации, но он склонялся к идее, что действительная причина тяготения не является механической. Очевидно она, как все гениальное, показалась ему слишком простой для Всемирного закона.
Критики теории Лесажа отмечали множество её слабых мест, особенно с точки зрения термодинамики. Джеймс Максвелл показал, что в модели Лесажа энергия частиц непременно перейдёт в теплоту и быстро расплавит любое тело. Анри Пуанкаре подсчитал, что скорость корпускул должна быть на много порядков выше скорости света, и их энергия испепелила бы все планеты [1, с. 1].
У нас вызывает сомнение наличие в космическом пространстве большого количества частиц, движущихся с высокими одинаковыми скоростями во всех направлениях. Могут существовать только отдельные высокоскоростные потоки (звездный ветер), движущиеся строго в определенном направлении. В наше время все эти вопросы легко решаются с использованием искусственных спутников.
Из выше приведенной гипотезы следует, что все пытались объяснить действие гравитации в объеме Вселенной, т.е. во всех направлениях.
Мы считаем, что этот закон (о формуле вообще не говорим) работает только при наличии у небесного тела атмосферы и расположении другого тела внутри ее. Во Вселенной же действуют другие законы движения, о которых написано ниже.
За более чем 300 лет, прошедшие после публикации закона, было обнаружено, что математическая модель гравитации, в том виде, как она записана, внутренне противоречива. Она приводит к парадоксальному выводу о том, что тела под действием собственной силы тяжести должны неудержимо сжиматься. Если бы это имело место в природе, то не было бы никакого развития, а произошло, как это отмечают, но нигде не афишируют ученые, схлопывание, т.е. полное исчезновение материи. Многие ученые — физики и философы назвали это явление величайшим кризисом физики [2, с. 1].
Принято считать, что Ньютон смог на основании установленных им законов механики объяснить движение планет, что не удавалось сделать другим на протяжении примерно 2000 лет. Однако, главным недостатком закона всемирного тяготения явилось то, что построенные согласно этому закону системы должны быть неустойчивыми, т.е. не могут существовать в принципе. В рамках математического подхода явления не объясняются. Сам Ньютон не смог объяснить устойчивость орбит планет Солнечной системы, и приписывал эту закономерность божественным силам [2, с. 1].
При использовании этих законов в практических целях в начале освоения космоса и запуске первых искусственных спутников Земли ученые столкнулись с рядом трудностей. Они заключались в том, что фактическое место нахождение выведенного на орбиту спутника существенно отличалось от рассчитанного на основании установленных законов.
Поскольку других альтернатив не было, то никто не стал утверждать, что это следствие несоответствия математического описания закона тяготения. Ученым для корректировки результатов потребовалось включать в расчеты кроме тяготения и другие силы. Для космических аппаратов это тяга их двигателей, а, при длительном движении в космосе по инерции — давление света и солнечного ветра на антенны и солнечные панели. В некоторых других вопросах приходится считаться с геофизическими свойствами Земли или аналогичными свойствами другого небесного тела [3, c. 8].
Поэтому, при изучении движения небесных тел приходится ограничиваться приближенным и последовательным исследованием движения небесных тел. Такой подход получил название метода последовательных приближений, основная идея которого состоит в замене основной, весьма сложной задачи, рядом более простых (но с каждым последующим шагом все более усложняющихся) задач. Следуя этому методу, небесная механика сосредотачивает свое внимание, прежде всего, на силе притяжения, происхождение и природа которой до сих пор неизвестна, но наличие, которой было установлено Ньютоном в законе всемирного тяготения [4, с. 1].
Давно доказано, что нельзя делать упор на положение, высказанное даже очень авторитетным ученым, не убедившись до конца в его правильности. Никто не застрахован от ошибок. Учитывая, что современная наука располагает высокоточным оборудованием, провести экспериментальную проверку такой простейшей математической зависимости не составит затруднений и не потребует много времени. Учитывая, что за последние годы количество высказываний против закона всемирного тяготения сильно возросло, такие исследования просто необходимы. Однако, почему — то до настоящего времени никто этого не сделал, и все предпочитают заниматься подгонкой данных под имеющиеся результаты. Благо, что есть компьютер, на который можно возложить все эти вычисления.
В настоящее время в небесной механике принято, что основная сила, управляющая движением тел Солнечной системы – притяжение Солнца. Однако, если бы любая планета Солнечной системы испытывала только притяжение Солнца, то ее движение было бы совершенно предсказуемо. Однако, как принято считать, из-за возмущений со стороны других планет их движение происходит непредсказуемым образом [4, с. 1].
Не только мы, но и ряд известных ученых сомневается в наличии гравитационного взаимодействия между телами в том виде, в каком оно представлено формулой, и пытаются найти ему другое объяснение.
Такие попытки предприняты нами, и их суть вкратце изложена в материалах [5, с. 53] и [6, с. 5]. В данной публикации постараемся более аргументированно объяснить наше видение гравитации и закономерностей движения космических тел.
Считаем, что существующее ранее, до открытия Ньютоном закона всемирного тяготения, утверждение ученых, что имеются два типа гравитации: земная и небесная, отличающиеся друг от друга, было правильным.
Как известно, Земля окружена воздушной оболочкой, называемой атмосферой. Каждый горизонтальный слой атмосферы сжат весом верхних слоев. Причину сжатия раскроем ниже. Поэтому давление в нижних слоях атмосферы больше, чем в верхних. Очевидно, что причиной падения яблока на землю, согласно существующей легенды, а также всех других тел, является общеизвестное давление на них выше расположенного столба атмосферы. Известно, что все, расположенные на Земле, предметы и объекты испытывают это давление, которое удерживает их на поверхности. Равноускоренное падение тел в атмосфере, по мере их приближения к земле, вызвано непрерывно увеличивающимся над ними весом атмосферного столба. Это и есть объяснение физической сущности и механизма земной гравитации или иначе закона тяготения.
Существующие отличия плотности атмосфер звезд, Земли и других планет, обуславливают значительное различие ускорения свободного падения для их условий. Это свидетельствует о несоответствии названия закона (всемирный) и непригодности его математического описания для оценки движения и взаимодействия тел в космическом пространстве.
За пределами атмосферы эта гравитация не действует. Это объясняет наличие там состояния невесомости. Перемещение тел в космосе происходит в основном под действием реактивных сил и энергии движущихся газопылевых потоков.
По нашему мнению, в основе закона распределения планет по орбитам, скоростей их обращения вокруг звезды и вращения вокруг собственной оси лежат принципы, изложенные в гипотезе извержения вулканов и наличия суперзвезд (ГИВиНС) [7, с. 195]. Потоки звездного ветра, извергаемые из звезд, образуют воронку, наподобие вихря или торнадо. При этом по наружной поверхности воронки высокотемпературные потоки звездного ветра движутся с большой скоростью по спирали вверх. В это же время по внутренней поверхности конуса воронки, вращаясь в противоположную сторону вниз движутся «холодные» потоки межпланетного газа и плазмы. Эти потоки обеспечивают давление, удерживающее планеты на орбитах и атмосферу вблизи их поверхности.
Извергающиеся вдоль стен жерла с большой скоростью, вихревые потоки звездного вещества обеспечивают планетам подъемную силу и сообщают им вращательное движение вокруг Солнца и собственной оси по внутренней поверхности конуса (рис. 1).
Расширение конуса воронки способствует увеличению диаметра орбит планет по мере удаления их от поверхности звезды. Существующее в центральной зоне вихря разрежение создает центростремительную силу, удерживающую планеты на круговой орбите [6, с. 5].
Начальная скорость звездного ветра достигает сотен километров в секунду, постепенно снижаясь по мере его удаления, чем объясняется уменьшение скорости движения по орбите планет наиболее удаленных от звезды.
Согласно предложенной гипотезы, обращение и вращение планет Солнечной системы [6, с. 5], а также устойчивость их положение на орбите определяется не силой гравитации, а уравновешиванием воздействия двух противоположно направленных потоков: снизу исходящего от Солнца потока солнечного ветра, вращающегося против часовой стрелки, а сверху опускающегося вниз по внутренней стороне конуса спирального потока межпланетного газа и охлажденной плазмы, вращающегося по часовой стрелке (рис. 1). Стабильное положение планет на орбитах обеспечивается взаимодействием внешнего и внутреннего потоков. Так увеличение скорости наружного потока при коронарных выбросах на Солнце, сопровождается увеличением разряжения внутри воронки, а, следовательно, и пропорциональным повышением скорости опускающегося внутри потока. Это способствует выравниванию сил, действующих на планету снизу и сверху. Аналогично, увеличение количества выбросов с поверхности Солнца, приводящее к снижению скорости опускающегося потока, сопровождается уменьшением их количества и скорости внешнего потока.
В данном случае сила тяготения планет и прочих материальных и газовых частиц к Солнцу обеспечивается движением внутреннего спирального потока, возникающего вследствие создаваемого разряжения внутри конической части воронки.
В качестве подтверждения наличия внутреннего спирального потока можно привести пример движения самолета по спиральной траектории при срыве в штопор и результаты наблюдений движения космических аппаратов. Так в результате действия сопротивления атмосферы спутник начинает спуск по спирали [8, с. 1]. При достижении внешних пределов Солнечной системы первыми космическими аппаратами «Пионер-10» и «Пионер-11» была обнаружена замедляющая сила неизвестной природы, отличная от всех других известных сил, влияющих на аппараты.
Очевидно, используя подъемную силу и скорость внешнего потока, можно добиться значительной экономии топлива и времени при запуске космических аппаратов и выводе их на требуемую орбиту. Знание направления потоков звездного ветра в космическом пространстве и их использование (аналогично океанским течениям) облегчит перемещение космических аппаратов по просторам Вселенной. Для изучения таких потоков можно использовать искусственные спутники Земли.
Наблюдениями со спутников установлено, что в межпланетном пространстве мчится направленный от Солнца поток вещества, получивший название солнечный ветер. Он представляет собой продолжение расширяющейся солнечной короны и состоит в основном из водорода, гелия и электронов. Частицы солнечного ветра летят со скоростями, составляющими несколько сот километров в секунду, удаляясь от Солнца на многие десятки астрономических единиц — туда, где межпланетная среда Солнечной системы переходит в разреженный межзвёздный газ. Вместе с ветром в межпланетное пространство переносятся и солнечные магнитные поля.
Наиболее вероятно, что движение галактик и других космических тел, т.е. расширение Вселенной, осуществляется за счет звездного ветра в смеси с газами и космической пылью. Именно он служит основной движущей силой ее расширения.
Для более точного определения движения космических тел в качестве математической модели предпочтительнее использовать известную в физике и используемую в аэродинамике формулу гидравлического сопротивления [9, с. 129]:
где F – сопротивление движению тела в среде, Н;
с – коэффициент, зависящий от формы тела, безразмерное число, значение его
берется из таблицы или может определяться экспериментально;
А – площадь наибольшего сечения тела в плоскости перпендикулярной
направлению потока, м2;
с — плотность движущейся среды, в которой находится тело, кг/м3;
— относительная скорость равная векторной разности скоростей тела и
потока, заданных относительно неподвижной системы отсчета, м/с.
По нашему мнению, данная формула соответствует наиболее точному описанию всех процессов и многообразия видов движения тел в космическом пространстве.
Таким образом, в результате проведенного анализа имеющихся литературных данных о тяготении предлагается следующая гипотеза:
— в основе распределения планет по орбитам, скоростей их обращения вокруг звезды и вращения вокруг собственной оси лежит не гравитация, а воздействие на них двух противоположно направленных потоков: снизу исходящего от Солнца потока солнечного ветра, вращающегося против часовой стрелки, а сверху опускающегося вниз по внутренней стороне конуса спирального потока межпланетного газа и охлажденной плазмы, вращающегося по часовой стрелке;
— тяготение планет и прочих материальных и газовых частиц к Солнцу (звездам) обеспечивается движением вниз внутреннего спирального потока, возникающего вследствие создаваемого разряжения внутри конической части воронки;
— для наиболее точного описания движения тел в космическом пространстве в качестве математической модели предпочтительнее использовать известную в физике формулу гидравлического сопротивления из раздела аэродинамики.
Источник