От губительного влияния мощного ультрафиолетового излучения Солнца землян защищает [ ]
Источником энергии Солнца являются [ ].
Звёзды типа Солнца на завершающем этапе своей эволюции становятся [ ].
Вселенная под действием гравитационных сил может [ ].
1. термоядерные реакции
2. красными гигантами
3. оставаться постоянной
4. белыми карликами
5. реакции радиоактивного распада
6. озоновый слой, находящийся в стратосфере и поглощающий это излучение
7. расширяться или сжиматься
1). От губительного влияния мощного ультрафиолетового излучения Солнца землян защищает озоновый слой, находящийся в стратосфере и поглощающий это излучение
2). Источником энергии Солнца являются термоядерные реакции
3). Звёзды типа Солнца на завершающем этапе своей эволюции становятся белыми карликами
4). Вселенная под действием гравитационных сил может расширяться или сжиматься
Ответ:
Объяснение:
Высота стены в этой задаче не играет роли, т.к. пружины конец стены находятся на одном уровне. Поэтому можем воспользоваться формулой дальности броска:
Как видно из формулы, максимальная дальность достигается при угле броска 45°.
Найдём из этой формулы скорость, причём эта скорость будет минимальной для того, чтобы тело перелетело стену:
Чтобы узнать, насколько нужно сжать пружины, воспользуемся законом сохранения энергии:
mv0²/2 = kΔx²/2 — формула показывает, что вся энергия пружины превратится в кинетическую энергию тела
Источник
Губительное влияние мощного ультрафиолетового излучения солнца земля защищает
Вопрос по физике:
От губительного влияния мощного ультрафиолетового излучения Солнца землян защищает [ ]
Источником энергии Солнца являются [ ].
Звёзды типа Солнца на завершающем этапе своей эволюции становятся [ ].
Вселенная под действием гравитационных сил может [ ].
1. термоядерные реакции
2. красными гигантами
3. оставаться постоянной
4. белыми карликами
5. реакции радиоактивного распада
6. озоновый слой, находящийся в стратосфере и поглощающий это излучение
7. расширяться или сжиматься
Ответы и объяснения 1
1). От губительного влияния мощного ультрафиолетового излучения Солнца землян защищает озоновый слой, находящийся в стратосфере и поглощающий это излучение
2). Источником энергии Солнца являются термоядерные реакции
3). Звёзды типа Солнца на завершающем этапе своей эволюции становятся белыми карликами
4). Вселенная под действием гравитационных сил может расширяться или сжиматься
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
- Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
- Писать без грамматических, орфографических и пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
- Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
- Использовать мат — это неуважительно по отношению к пользователям;
- Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.
Источник
§ 67. Строение и эволюция вселенной
Звёзды во Вселенной объединены в гигантские звёздные системы, называемые галактиками. Звёздная система, в составе которой находится наше Солнце, называется Галактикой (или Млечным Путём, поскольку слово «галактика» в переводе с греческого означает «млечный, молочный»).
Число звёзд в Галактике порядка 10 12 . Светлая серебристая полоса звёзд, опоясывающая всё небо, которую мы называем Млечным Путём, представляет собой основную часть нашей Галактики, по форме напоминающую линзу или чечевицу (рис. 191). Диаметр Галактики приблизительно равен 30 000 пк 1 или почти 100 000 световых лет 2 . Галактика не имеет чётких границ — по краям звёздная плотность постепенно сходит на нет. В центре Галактики расположено ядро диаметром 1000—2000 пк — гигантское уплотнённое скопление звёзд. Масса Галактики приблизительно равна 2 • 10 11 масс Солнца.
Рис. 191. Галактика (вид с ребра)
Помимо звёзд, планет и малых тел, имеющихся в некоторых звёздных системах, в состав Галактики входит ещё рассеянная материя — межзвёздный газ, пыль, излучаемые звёздами заряженные частицы. Масса рассеяннои материи составляет 1/1000 часть массы Галактики.
Эдвин Пауэлл Хаббл (1889-1953)
Американский астроном. Основные труды посвящены изучению галактик. Обнаружил смещение спектральных линий в длинноволновую область в спектрах далёких галактик
По классификации, проведённой американским астрономом Эдвином Хабблом, существует три вида галактик: эллиптические, спиральные и неправильные. Наша Галактика является спиральной (рис. 192). Солнечная система расположена между двумя спиральными ветвями, где количество звёзд сравнительно невелико.
Рис. 192. Млечный Путь — спиральная галактика
Большинство галактик сосредоточено в скоплениях. Вся система скоплений галактик (из которых нам пока известна только их часть) называется Метагалактикой.
Для выяснения прошлого и будущего наблюдаемой Вселенной важное значение имеет создание теоретических моделей изучаемого объекта. Первые научно обоснованные модели Вселенной были созданы российским физиком Александром Александровичем Фридманом.. Для ответа на важные космологические вопросы, например о стационарности или нестационарности Вселенной, о её форме, радиусе кривизны и многие другие, он воспользовался созданной Эйнштейном в 1916 г. общей теорией относительности (теорией всемирного тяготения).
Александр Александрович Фридман (1888-1925)
Российский математик, физик и геофизик. Создатель первых научно обоснованных моделей Вселенной, предсказал расширение Вселенной
В 1922 г. Фридман проанализировал систему из десяти сложнейших уравнений теории относительности и пришёл к фундаментальному выводу о том, что ни при каких условиях их решение не может быть единственным. Это означает, что общая теория относительности не даёт одного определённого ответа на поставленные вопросы. Тем не менее Фридман понял, как можно получить ответ (хоть и неоднозначный) на вопрос, что может представлять собой Вселенная с точки зрения общей теории относительности. Он нашёл новые, вполне определённые решения уравнений общей теории относительности в виде трёх возможных моделей нестационарной Вселенной. Две из них описывали монотонно расширяющуюся Вселенную (с монотонно растущим радиусом кривизны), а третья — периодическую Вселенную (радиус кривизны её пространства сначала возрастал от нуля до некоторой величины, после чего уменьшался до нуля).
Из этих моделей следует вывод о том, что Вселенная не может оставаться постоянной, она должна расширяться или сжиматься под действием гравитационных сил.
Во времена Фридмана о движении галактик ничего не было известно. Но в 1929 г. Хаббл, наблюдая спектры далеких галактик с помощью телескопа с большим разрешением, обнаружил, что спектральные линии смещены в длинноволновую область, т. е. в сторону красных линий. В соответствии с эффектом Доплера 3 это означало, что расстояния между наблюдателем с Земли и галактиками увеличивалось, а частота исследуемого излучения уменьшалась. Более того, сопоставив расстояния до галактик и величину смещения в их спектрах, Хаббл открыл следующий закон (названный впоследствии его именем): скорости удаления галактик пропорциональны расстоянию до них.
где v — скорость движения галактики относительно наблюдателя, R — расстояние до неё, Н = 70 км/(с • Мпс) — постоянная Хаббла.
По смещению спектральных линий можно определять не только скорости галактик, но и расстояния до них.
Данный закон следовал из моделей Фридмана, описывающих расширяющуюся Вселенную. Поэтому можно сказать, что возможность расширения Вселенной была теоретически предсказана до открытия закона Хабблом.
Вопросы
- Что называется световым годом?
- Какой вывод следовал из моделей Вселенной, полученных А. А. Фридманом?
- Кто, когда и каким образом экспериментально подтвердил факт расширения Вселенной?
Задание
- Определите центростремительное ускорение Луны при её обращении вокруг Земли. Необходимые для решения задачи данные найдите самостоятельно.
- Используя дополнительную литературу и ресурсы Интернета, подготовьте доклад на тему «Планеты-карлики в Солнечной системе».
Итоги главы. Самое главное
Ниже даны начала утверждений и цифрами указаны возможные их окончания.
Перенесите в тетрадь начала утверждений и впишите в квадратные скобки номер подходящего окончания утверждения.
- От губительного влияния мощного ультрафиолетового излучения Солнца землян защищает [ ].
- Источником энергии Солнца являются [ ].
- Звёзды типа Солнца на завершающем этапе своей эволюции становятся [ ].
- Вселенная под действием гравитационных сил может [ ].
- термоядерные реакции
- красными гигантами
- оставаться постоянной
- белыми карликами
- реакции радиоактивного распада
- озоновый слой, находящийся в стратосфере и поглощающий это излучение
- расширяться или сжиматься
Проверь себя
- Формирование Солнечной системы началось приблизительно
A. 3,5 млрд лет назад
Б. 4,6 млн лет назад
B. 5 млн лет назад
Г. 5 млрд лет назад
Число больших планет в Солнечной системе равно
А. 13
Б. 9
В. 8
Г. 5
Направление обращения больших планет вокруг Солнца
A. совпадает с направлением вращения протооблака
Б. противоположно направлению вращения Солнца вокруг своей оси
B. может периодически меняться
Г. совпадает с направлением вращения Солнца у всех планет, за исключением Венеры и Урана
Существенное уменьшение массы Солнца могло бы привести к
A. выходу некоторых планет из Солнечной системы
Б. уменьшению радиусов орбит движения планет Солнечной системы
B. потеплению на Земле и других планетах
Г. увеличению мощности излучения (светимости) Солнца
1 Парсек (пк) — это такое расстояние, с которого средний радиус земной орбиты (равный 1 а. е.), перпендикулярный лучу зрения, виден под углом в одну угловую секунду (1″), 1 пк = 3,26 св. года — 206 265 а. е.
2 Световой год (св. год) — расстояние, пройденное светом в течение года.
3 Эффект Доплера — изменение частоты принимаемых волн при относительном движении источника и наблюдателя (приёмника волн). При их сближении частота увеличивается, а при удалении друг от друга — уменьшается. Эффект Доплера наблюдается как для звуковых, так и для электромагнитных волн. Назван в честь австрийского физика Христиана Доплера, теоретически обосновавшего этот эффект в 1842 г.
Источник
Роспотребнадзор (стенд)
Роспотребнадзор (стенд)
Ультрафиолетовое излучение и его влияние на организм — Полезная информация
Ультрафиолетовое излучение и его влияние на организм
Ультрафиолетовое излучение и его влияние на организм
Общая характеристика
Наибольшей биологической активностью обладают ультрафиолетовые лучи. В естественных условиях мощным источником ультрафиолетовых лучей является солнце. Однако лишь длинноволновая его часть достигает земной поверхности. Более коротковолновая радиация поглощается атмосферой уже на высоте 30- 50 км от поверхности земли.
Наибольшая интенсивность потока ультрафиолетовой радиации наблюдается незадолго до полудня с максимумом в весенние месяцы.
Как уже указывалось, ультрафиолетовые лучи обладают значительной фотохимической активностью, что широко используется в практике. Ультрафиолетовое облучение применяется при синтезе ряда веществ, отбеливании тканей, изготовлении лакированной кожи, светокопировании чертежей, получении витамина D и других производственных процессах.
Важным свойством ультрафиолетовых лучей является их способность вызывать люминесценцию.
При некоторых процессах имеет место воздействие на работающих ультрафиолетовых лучей, например электросварка вольтовой дугой, автогенная резка и сварка, производство радиоламп и ртутных выпрямителей, литье и плавка металлов и некоторых минералов, светокопировка, стерилизация воды и т. д. Этому же воздействию подвергаются медицинский и технический персонал, обслуживающий ртутно-кварцевые лампы.
Ультрафиолетовые лучи обладают способностью изменять химическую структуру тканей и клеток.
Длина волны ультрафиолетового излучения
Биологическая активность ультрафиолетовых лучей различной длины волны неодинакова. Ультрафиолетовые лучи с длиной волны от 400 до 315 mμ . оказывают относительно слабое биологическое действие. Лучи с меньшей длиной волны отличаются большей биологической активностью. Ультрафиолетовые лучи длиной 315-280 mμ оказывают сильное кожное и антирахитическое действие. Особенно большой активностью обладает излучение с длиной волн 280-200 mμ . (бактерицидное действие, способность активно воздействовать на тканевые белки и липоиды, а также вызывать гемолиз).
В производственных условиях имеет место воздействие ультрафиолетовых лучей с длиной волны от 36 до 220 mμ ., т. е. обладающих значительной биологической активностью.
В отличие от тепловых лучей, основным свойством которых является развитие гиперемии в участках, подвергшихся облучению, действие на организм ультрафиолетовых лучей представляется значительно более сложным.
Ультрафиолетовые лучи относительно мало проникают через кожу и их биологическое действие связано с развитием многих нейрогуморальных процессов, обусловливающих сложный характер влияния их на организм.
Ультрафиолетовая эритема
В зависимости от интенсивности источника света и содержания в его спектре инфракрасных или ультрафиолетовых лучей изменения со стороны кожи будут неодинаковыми.
Воздействие ультрафиолетовых лучей на кожу вызывает характерную реакцию со стороны сосудов кожи — ультрафиолетовую эритему. Ультрафиолетовая эритема существенно отличается от тепловой эритемы, вызванной инфракрасным облучением.
Обычно при применении инфракрасных лучей выраженных изменений со стороны кожи не наблюдается, так как возникающее чувство жжения и боль препятствуют длительному воздействию этих лучей. Эритема, развивающаяся в результате действия инфракрасных лучей, возникает непосредственно после облучения, является нестойкой, держится недолго (30-60 минут) и носит главным образом гнездный характер. После длительного воздействия инфракрасных лучей появляется бурая пигментация пятнистого вида.
Ультрафиолетовая эритема появляется после облучения вслед за некоторым латентным периодом. Этот период колеблется у разных людей от 2 до 10 часов. Продолжительность латентного периода ультрафиолетовой эритемы находится в известной зависимости от длины волны: эритема от длинноволновых ультрафиолетовых лучей появляется позднее и держится дольше, чем от коротко
Эритема, вызванная ультрафиолетовыми лучами, имеет ярко-красную окраску с резкими границами, точно соответствующими участку облучения. Кожа становится несколько отечной и болезненной. Наибольшего развития эритема достигает через 6-12 часов после появления, держится в течение 3-5 дней и постепенно бледнеет, приобретая коричневый оттенок, причем происходит равномерное и интенсивное потемнение кожи вследствие образования в ней пигмента. В некоторых случаях в период исчезновения эритемы наблюдается небольшое шелушение.
Степень развития эритемы зависит от величины дозы ультрафиолетовых лучей и индивидуальной чувствительности. При прочих равных условиях, чем больше доза ультрафиолетовых лучей, тем интенсивнее воспалительная реакция кожи. Наиболее выраженная эритема вызывается лучами с длинами волн около 290 mμ . При передозировке ультрафиолетового облучения эритема приобретает синюшный оттенок, края эритемы становятся расплывчатыми, облученный участок отечен и болезнен. Интенсивное облучение может вызвать ожог с развитием пузыря.
Чувствительность различных участков кожи к ультрафиолету
Кожные покровы живота, поясницы, боковых поверхностей грудной клетки обладают наибольшей чувствительностью к ультрафиолетовым лучам. Наименее чувствительна кожа кистей рук и лица.
Лица с нежной, слабопигментированной кожей, дети, а также страдающие базедовой болезнью и вегетативной дистонией обладают большей чувствительностью. Повышенная чувствительность кожи к ультрафиолетовым лучам наблюдается весной.
Установлено, что чувствительность кожи к ультрафиолетовым лучам может изменяться в зависимости от физиологического состояния организма. Развитие эритемной реакции зависит в первую очередь от функционального состояния нервной системы.
В ответ на ультрафиолетовое облучение в коже образуется и откладывается пигмент, являющийся продуктом белкового обмена кожи (органическое красящее вещество — меланин).
Длинноволновые ультрафиолетовые лучи вызывают более интенсивный загар, чем коротковолновые. При повторном ультрафиолетовом облучении кожа становится менее восприимчивой к этим лучам. Пигментация кожи развивается нередко и без предварительно видимой эритемы. В пигментированной коже ультрафиолетовые лучи не вызывают фотоэритемы.
Положительное влияние ультрафиолета
Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие) и оказывают также антиспастическое и антирахитическое действие. Под влиянием ультрафиолетовых лучей происходит образование очень важного для фосфорно-кальциевого обмена витамина D (находящийся в коже эргостерин превращается в витамин D). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.
Благоприятное действие ультрафиолетовых лучей выражается в изменении иммунобиологической реактивности организма. Облучение стимулирует выработку антител, повышает фагоцитоз, тонизирует ретикулоэндотелиальную систему. Благодаря этому повышается сопротивляемость организма к инфекциям. Важное значение в этом отношении имеет дозировка облучения.
Ряд веществ животного и растительного происхождения (гематопорфирин, хлорофилл и т. д.), некоторые химические препараты (хинин, стрептоцид, сульфидин и т. д.), особенно флуоресцирующие краски (эозин, метиленовая синька и т. д.), обладают свойством повышать чувствительность организма к свету. В промышленности у лиц, работающих с каменноугольной смолой, отмечаются заболевания кожи открытых частей тела (зуд, жжение, краснота), причем эти явления исчезают по ночам. Это связано с фотосенсибилизирующими свойствами содержащегося в каменноугольной смоле акридина. Сенсибилизация имеет место преимущественно в отношении видимых лучей и в меньшей степени в отношении ультрафиолетовых лучей.
Большое практическое значение имеет способность ультрафиолетовых лучей убивать различные бактерии (так называемое бактерицидное действие). Это действие особенно интенсивно выражено у ультрафиолетовых лучей с длинами волн менее (265 — 200 mμ ).
Бактерицидное действие света связано с влиянием на протоплазму бактерий. Доказано, что после ультрафиолетового облучения митогенетическое излучение в клетках и крови повышается.
По современным представлениям, в основе действия света на организм лежит главным образом рефлекторный механизм, хотя большое значение придается и гуморальным факторам. Особенно это относится к действию ультрафиолетовых лучей. Нужно также иметь в виду возможность действия видимых лучей через органы зрения на кору и вегетативные центры.
В развитии эритемы, вызванной светом, существенное значение придается влиянию лучей на рецепторный аппарат кожи. При воздействии ультрафиолетовых лучей в результате распада белков в коже образуются гистамин и гистаминоподобные продукты, которые расширяют кожные сосуды и повышают их проницаемость, что ведет к гиперемии и отечности. Образующиеся в коже при воздействии ультрафиолетовых лучей продукты (гистамин, витамин D и др.) поступают в кровь и вызывают те общие сдвиги в организме, которые имеют место при облучении.
Таким образом, развивающиеся в облученном участке процессы ведут нейрогуморальным путем к развитию общей реакции организма. Эта реакция определяется главным образом состоянием высших регулирующих отделов центральной нервной системы, которое, как известно, может меняться под влиянием различных факторов.
Нельзя говорить о биологическом действие ультрафиолетового облучения вообще, вне зависимости от длины волны. Коротковолновое ультрафиолетовое излучение вызывает денатурацию белковых веществ, длинноволновое — фотолитический распад. Специфическое действие разных участков спектра ультрафиолетового излучения выявляется главным образом в начальной стадии.
Применение ультрафиолетового излучения
Широкое биологическое действие ультрафиолетовых лучей дает возможность в определенных дозах использовать их для профилактических и лечебных целей.
Для ультрафиолетового облучения пользуются солнечным светом, а также искусственными источниками облучения: ртутно-кварцевыми и аргонортутно-кварцевыми лампами. Спектр излучения ртутно-кварцевых ламп характеризуется наличием более коротких ультрафиолетовых лучей, чем в солнечном спектре.
Ультрафиолетовое облучение может быть общим или местным. Дозировка процедур производится по принципу биодоз.
В настоящее время ультрафиолетовое облучение широко используют, прежде всего, для профилактики различных заболеваний. С этой целью ультрафиолетовое облучение применяют для оздоровления окружающей человека внешней среды и изменения его реактивности (в первую очередь — повышения его иммунобиологических свойств).
С помощью специальных бактерицидных ламп может производиться стерилизация воздуха в лечебных учреждениях и жилых помещениях, стерилизация молока, воды и т. д. широко используется ультрафиолетовое облучение для предупреждения рахита, гриппа, в целях общего укрепления организма в лечебных и детских учреждениях, школах, физкультурных залах, фотариях при угольных шахтах, при тренировке спортсменов, для акклиматизации к условиям севера, при работах в горячих цехах (ультрафиолетовое облучение дает больший эффект в сочетании с воздействием инфракрасной радиации).
Ультрафиолетовые лучи особенно широко используются для облучения детей. В первую очередь такое облучение показано, ослабленным, часто болеющим детям, проживающим в северных и средних широтах. При этом улучшается общее состояние детей, сон, нарастает вес, снижается заболеваемость, уменьшается частота катаральных явлений и, длительность заболеваний. Улучшается общее физическое развитие, нормализуется кровь, проницаемость сосудов.
Значительное распространение получило также ультрафиолетовое облучение горнорабочих в фотариях, которые в большом количестве организованы на предприятиях горнорудной промышленности. При систематическом массовом облучении шахтеров, занятых на подземных работах, отмечается улучшение самочувствия, повышение трудоспособности, уменьшение утомляемости, снижение заболеваемости с временной утратой трудоспособности. После облучения шахтеров повышается процентное содержание гемоглобина, появляется моноцитоз, уменьшается число случаев гриппа, снижается заболеваемость опорно-двигательного аппарата, периферической нервной системы, реже наблюдаются гнойничковые заболевания кожи, катары верхних дыхательных путей и ангины, улучшаются показания жизненной емкости, легких.
Применение ультрафиолетового излучения в медицине
Применение ультрафиолетовых лучей с терапевтической целью базируется в основном на противовоспалительном, антиневралгическом и десенсибилизирующем действии этого вида лучистой энергии.
В комплексе с другими лечебными мероприятиями ультрафиолетовое облучение проводится:
1) при лечении рахита;
2) после перенесенных инфекционных заболеваний;
3) при туберкулезных заболеваниях костей, суставов, лимфатических узлов;
4) при фиброзном туберкулезе легких без явлений, указывающих на активацию процесса;
5) при заболеваниях периферической нервной системы, мышц и суставов;
6) при заболеваниях кожи;
7) при ожогах и отморожениях;
8) при гнойных осложнениях ран;
9) при рассасывании инфильтратов;
10) в целях ускорения регенеративных процессов при травмах костей и мягких тканей.
Противопоказаниями к облучению являются:
1) злокачественные новообразования (так как облучение ускоряет их рост);
2) резкое истощение;
3) повышенная функция щитовидной железы;
4) выраженные сердечно-сосудистые заболевания;
5) активный туберкулез легких;
6) заболевания почек;
7) выраженные изменения центральной нервной системы.
Следует помнить, что получение пигментации, особенно в короткий срок, не должно быть целью лечения. В ряде случаев хороший терапевтический эффект наблюдается и при слабой пигментации.
Негативное действие ультрафиолета
Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.
В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ .) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.
При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.
Средства защиты от ультрафиолетового излучения
Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц — изолирующими ширмами, переносными экранами, спецодеждой.
В бытовых условиях рекомендуется использование солнцезащитных кремов, лосьонов, спреев с высоким фактором защиты, ношение солнцезащитных очков и закрытой одежды из натуральных тканей.
Источник