Предварительные сведения: Магнитное поле — разновидность электромагнитного поля, создаваемая движущимися электрическими зарядами или токами и оказывающая силовое воздействие на движущиеся электрические заряды или токи.
Связь между напряженностью магнитного поля, индукцией и намагниченностью в вакууме:
Единицы измерения магнитного поля, встречающиеся в тексте:
11 лет меняет знак
Напряженность магнитного поля (Н) (вектор) в СИ не имеет наименования, измеряется в (А/м). Напряженность магнитного поля в СГС измеряется в эрстедах (Э). Названа в честь датского физика Ханса Кристиана Эрстеда (датск. Hans Christian Ørsted) (1777-1851).
1 эрстед равен напряжённости магнитного поля, создаваемого на расстоянии 1 см от бесконечно длинного прямолинейного проводника ничтожно малого кругового сечения, по которому пропускают ток силой 5 ампер.
1 эрстед равен напряжённости магнитного поля в вакууме при индукции 1 гаусс (Гс).
Гаусс — единица индуктивности в системе СГС. Названа в честь гениального немецкого математика, астронома и физика (Карла Фридриха Гаусса (Johann Carl Friedrich Gauß) (1777-1855).
Индукция магнитного поля (В) (вектор) в СИ измеряется в тесла (Тл). Названа в честь выдающегося сербского (американского) физика, инженера, изибретателя Никола Тесла (1856-1943).
М́аксвелл — единица измерения магнитного потока в системе СГС. Русское сокращение — Мкс (не путать с микросекундой, у которой сокращённое обозначение (мкс) записывается со строчной буквы). Международное сокращение — Mw (не путать с мегаваттом, MW). Введена Международной электротехнической комиссией в 1930 г. (ранее эта единица называлась линией). Названа в честь выдающегося английского физика Джеймса Клерка Максвелла (James Clerk Maxwell) (1831-1879).
1 максвелл = 1 гаусс·см² = 10 −8 вебер.
В однородном магнитном поле с индукцией 1 гаусс магнитный поток в 1 максвелл проходит через плоский контур площадью 1 см², расположенный перпендикулярно вектору индукции.
В́ебер (обозначение: Вб, Wb) — единица измерения магнитного потока в системе СИ. По определению, изменение магнитного потока через замкнутый контур со скоростью один вебер в секунду наводит в этом контуре ЭДС, равную одному вольту (см. Закон Фарадея). Через другие единицы измерения СИ вебер выражается следующим образом: Вб = В·с = кг·м 2 ·с -2 ·А -1 Единица названа в честь немецкого физика Вильгельма Эдуарда Вебера (Wilhelm Eduard Weber) (1804-1891).
Некоторые единицы системы измерения физических величин СГС до сих пор используется специалистами в астрофизике, и в ядерной физике из-за удобства. СГС (сантиметр-грамм-секунда) — система единиц измерения, которая широко использовалась до принятия международной системы единиц (СИ).
Более 100 лет назад американский астроном Джордж Хэйл (Hale, George Ellery) в 1908 г. открыл зеемановское расщепление темных (фраунгоферовых) линий в спектре солнечных пятен. Это открытие положило начало систематическому изучению магнитных полей на Солнце и поискам магнитных полей других космических тел (звезды, галактические туманности и др.). До этого открытия единственным примером магнитных полей в космосе являлось магнитное поле нашей Земли.
Первые спектроскопические исследования общего магнитного поля Солнца, выполненные Хэйлом и др. 35, показали, что в 1913—1914 гг. Солнце было подобно равномерно намагниченной сфере с магнитной осью слегка наклоненной к оси вращения и полярностью того же знака, что у Земли.
Позднее был разработан метод получения непрерывного распределения поля в двух измерениях на диске Солнца путем применения принципа спектрогелиографа — прибора, позволяющего получить монохроматическое, в свете избранной спектральной линии, изображение Солнца. Метод позволял, перемещая изображение Солнца на фотопластинке, позади выходной щели спектрогелиографа, видеть [и фиксировать, конечно] чередование светлых и темных мест, соответствующее чередованию магнитных и немагнитных областей на Солнце.
Для уменьшения ошибок фотографического метода определения магнитных полей на Солнце был предложен ряд остроумных, сложных интерферометрических методов, в основном предназначенных для измерения общего магнитного поля Солнца (вдали от солнечных пятен и других зон активности). Однако для целей измерения слабых полей наиболее эффективным оказался фотоэлектрический метод (метод магнитографа), получивший затем свое дальнейшее развитие. Магнитографы позволяют получать полную и детальную магнитограмму всей солнечной поверхности. Создатели магнитографа — Хэролд (Гарольд) и Хорес (Гораций) Бэбкоки (отец и сын).
Американский астроном Хэролд (Гарольд) Дилос Бэбкок (Babcock, Harold Delos), совместно с сыном (Хорес (Гораций) Уэлкам Бэбкок (Babcock, Horace Welcome) усовершенствовал методику измерения магнитного поля Солнца. Они создали магнитограф — прибор, измеряющий с точностью до 1 Гс магнитное поле по всему диску Солнца путем его сканирования с высоким пространственным разрешением.
Хорес Бэбкок совместно с отцом начал регулярное картографирование солнечных магнитных полей. Предложил гипотезу, объясняющую образование солнечных пятен и их магнитные свойства. Согласно этой гипотезе силовые линии общего магнитного поля Солнца закручиваются вследствие неравномерности вращения Солнца и тогда, когда это тороидальное поле выносится на поверхность восходящими потоками вещества, в фотосфере в местах выхода силовых линий образуются пятна. («Topology of the magnetic field reversal from H.W. Babcock» (ApJ 133, 1961. [«Топология инверсии магнитного поля»])
Измерения на магнитографе позволили астрономам определить сначала исчезновение, а затем смену знака на полюсах Солнца (полярность общего поля была противоположна полярности земного поля с 1956 по 1957 г.; в середине 1957 г. знак поля на южном полюсе изменился на противоположный и оба полюса в течение более полугодового периода, до ноября 1958 г., сохраняли одинаковый знак (весной 1957 г. поле исчезло на обоих полюсах на несколько месяцев). В ноябре 1958 г. поле на северном полюсе практически внезапно изменило свой знак с + (северная полярность) на — (южная полярность); в 1959 г. оно было параллельно полю Земли.
Солнечные пятна состоят из темного ядра — «тени» и более светлой, окаймляющей ядро полутени. При большом разрешении видна тонкая структура полутени (почти радиально направленные волокна). Температура тени около 4300°, более чем на 1000° ниже, чем в окружающей фотосфере (5740°).
Резкость границ пятна и фотосферы, а также тени и полутени — свидетельство того, что слой, в котором возникает охлаждение, неглубокий (порядка нескольких тыс. км), так как в противном случае край был бы размыт излучением, идущим снизу.
Предполагается, что этот слой расположен там, где возникает конвекция в атмосфере Солнца; магнитные поля, которые неизменно несут с собой пятна, задерживают конвекцию: пятно является темным из-за препятствия со стороны магнитного поля конвективному нагреванию, которое происходит повсеместно в атмосфере Солнца (явление грануляции).
В пятнах сосредоточены наиболее сильные магнитные поля, достигающие 4000 Гс. Магнитный поток отдельного пятна может меняться в широких пределах от 10 20 до 10 23 Мкс [от 10 12 до 10 15 Вб], в среднем около 10 21 Мкс [10 13 Вб]. В большинстве случаев пятна образуют так называемые биполярные группы — систему двух пятен, в которой пятно впереди идущее (по направлению вращения Солнца — лидер, или р-пятно) имеет полярность, противоположную «хвостовому» пятну (f-пятно).
Для подавляющего большинства пятен полярности р- и f-пятен противоположны в северной и южной полусферах (Хэйл), причем эти полярности меняются на противоположные от одного 11-летнего цикла к другому. Отсюда было сделано заключение, что полный «магнитный» цикл Солнца около 22 лет. В последнем цикле 1954—1964 гг. с максимумом в 1958 г. р-пятна в северном полушарии (так же как f-пятна в южном) имели положительную (северную) полярность.
[цитируемая статья 1 А.Б. Северного опубликована в 1966 г. (в это время он являлся членом-корреспондентом АН СССР, с 1968 г. он действительный член АН СССР)]
Андрей Борисович Северный, академик АН СССР, астрофизик. Основные работы Северного посвящены физике Солнца. Принимал участие в подготовке строительства Крымской астрофизической обсерватории, в 1946 стал ее сотрудником, в 1952 — директором. По его проекту в Крымской обсерватории был построен башенный солнечный телескоп (1954), сконструирован целый ряд приборов для астрофизических наблюдений Солнца, в том числе прецизионный интерференционно-поляризационный фильтр и магнитограф.
Картинка внизу: Компьютерная 3D модель магнитного поля солнечного пятна созданная суперкомпьютером BLUEFIRE в High Altitude Observatory National Center for Atmospheric Research (NCAR). Boulder, Colorado, USA (июль 2009)
Источник
Магнитное поле Солнца
Под верхним слоем фотосферы (солнечной поверхности) расположена конвективная зона Солнца. Именно внутри нее, как говорят современные ученые, и зарождается магнитное поле звезды. Невозможно представить, несколько большое значение имеет в происходящих на Солнце процессах магнитное поле. Скорее всего, оно есть ответом на все активные явления, которые происходят в атмосфере Солнца, включая и солнечные вспышки. То есть без него Солнце было бы не таким интересным для изучения человечеством.
Схема магнитного поля Солнца
Берут свое начало под влиянием магнитного поля практически все объекты, зафиксированные на Солнце. В первую очередь – это солнечные пятна, обозначающие собой места выходящих из недр Солнца гигантских магнитных петель, пересекающих солнечную поверхность. Из-за этого пятна обычно состоят из северной и южной магнитной полярности. Эти области равны основам магнитной трубки, которая выходит из недр Солнца. На циклы солнечной активности также влияет цикличность колебаний магнитного поля, которое происходит в недрах Солнца. Парящие над поверхностью Солнца протуберанцы, зрительно как бы висящие в пустоте, на самом деле пронизаны нитями магнитного поля, основываясь на нем. А также стримеры и петли, которые мы часто наблюдаем в короне Солнца, есть простым повторением формы топологии магнитных полей, что их окружают. Понимание всего этого позволяет вычислить, какая магнитная обстановка на Солнце ожидает нас сегодня и в любой другой день.
Методы измерения магнитного поля Солнца
Заряженные частицы, попадающие в магнитное поле, движутся под его влиянием. При этом электроны, движущие вокруг ядра правосторонне, под влиянием магнитного поля энергию увеличивают, левосторонне движущиеся – ее соответственно уменьшают. Этот так называемый эффект Зеемена расщепляет излучение атома на компоненты. Измеряя величину расщепления, мы имеем возможность узнать величину и направленность магнитных полей далеких объектов, которые невозможно исследовать непосредственно, например, Солнце. Определить с высокой точностью величину поля солнечной поверхности позволяют разработки последних лет, но они часто бездейственны при намерении измерить трехмерного поля в короне Солнца. В этом случае помогает использование методов математики.
Делать правдивые предсказания погоды космоса помогает знание природы и жизнедеятельности магнитного поля Солнца. Ожидание новой активной вспышки на Солнце можно определить в настоящее время по многим косвенным признакам. Однако на данном этапе научных процессов, относительно долгосрочных предсказаний времени и продолжительности протекающих солнечных циклов, остаются неточными. Они основываются больше на выведении эмпирических зависимостей, а не на конкретных физических моделях. Ближайшее будущее, надеемся, сможет разъяснить достаточно хорошо поведение и активность Солнца, и даст возможность, правильно смоделировав его активность, предсказывать погоду космоса не хуже погоды на Земле. Хотя уже сейчас можно точно сообщить о наличии магнитной бури на Солнце сегодня или в любой календарный день.
Источник
Характер магнитного поля солнца
Библиографическая ссылка на статью: Омуркулов Т.А. Сущность магнитных полей солнца // Современные научные исследования и инновации. 2013. № 2 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2013/02/20439 (дата обращения: 09.06.2021).
Необходимые сведения о Солнце. Солнце – плазменный шар, центральное тело нашей солнечной системы и единственная ближайшая звезда, которую видим не как точку, а как диск. Линейный радиус Солнца составляет RC =695990 км. Масса Солнца равна MC =2•10 30 кг [1]. Температура в центре (ядре) равна 15 млн. K. Плотность ядра 1,6•10 5 кг. Хотя ядра атомов «упакованы» здесь примерно в 1000 раз плотнее, чем в металлах, высокая температура поддерживает вещество в газообразном состоянии [2].
Согласно теоретическим данным в настоящее время Солнце пребывает на стадии главной последовательности (на стадии превращения ядер водорода в ядра гелия) уже 4,6•10 9 лет и будет продолжать находиться на этой стадии примерно столько же времени, пока водород в ядре не будет исчерпан. Внутреннее строение Солнца приведено на рис. 1 [3].
Наружный слой Солнца, из которого излучается принимаемое нами оптическое излучение, фотосфера нагрета до 6000 K. Газ в фотосфере ионизован лишь на 0,1%, но этого вполне достаточно, чтобы электропроводимость была высокой. Выше и ниже фотосферы газ ионизован практически полностью, поэтому проводимость еще выше. Над фотосферой расположена верхняя атмосфера Солнца. Ее делят на нижнюю часть – хромосферу, толщиной в несколько тысяч км с температурой 6•10 3 – 10 4 K, среднюю, переходную область с резким переходом температуры от 10 4 до 10 6 K и корону – очень протяженную внешнюю атмосферу, нагретую, в среднем до 2 млн. K и плавно переходящую в межпланетную среду. Непосредственно под фотосферой располагается конвективная зона Солнца, в которой энергия из недр наружу передается в основном конвективным путем. Конвекция на Солнце развита сильно, напоминает бурное кипение в гигантских масштабах и проявляет себя на фотосфере в виде грануляций и супергрануляций. Под конвективной зоной располагается, самая протяженная область, зона лучистого переноса энергии, а под ней находится ядро Солнца. Средний период вращения нашего светила составляет 27 земных суток. Вращение является дифференциальным [1–3 ].
Магнитные поля Солнца. На Солнце и на более удаленных небесных телах магнитные поля измеряют лишь косвенно. Впервые это сделал Д. Хейл в 1908 г., который обнаружил, что в солнечных пятнах имеются магнитные поля до 0,3 Тл (3000 Гс). Он был первым, кто обнаружил существование магнетизма за пределами Земли. Более слабые поля измеряют изобретенным Г. Бэбкоком магнитографом, который дает возможность измерить продольную (вдоль луча зрения) компоненту индукции магнитного поля, равную примерно 10 -4 Тл (1 Гс) и даже меньше. Многолетние наблюдения показали, что сильные магнитные поля имеются лишь в так называемых активных областях Солнца – в солнечных пятнах, где магнитная индукция порядка десятых долей Тесла (тысячи Гаусс). В других местах типичны поля 0,1 – 0,2 мТл (1 – 2 Гс). В околополярных областях магнитное поле имеет структуру близкую к дипольной с магнитными полюсами, примерно совпадающими с осью вращения. В умеренных широтах Солнца (|φ| о ) преобладают биполярные (двуполярные) области, вытянутые вдоль экватора и униполярные (однополярные) области. Характерной чертой магнитных полей Солнца оказалось то, что изменения их полярности имеют 11-летнюю периодичность. Таким образом, полный инверсионный цикл магнитных полей Солнца (далее МПС) составляет порядка 22-23 года [1,2,4]. Наиболее ярким наблюдательным проявлением 11-летнего цикла являются периодические вариации количества активных областей (пятен) на Солнце. Новый цикл солнечной активности начинается с того, что в период минимума числа пятен появляются активные области на гелиографических широтах ±30 о . Далее, с течением цикла, средняя широта пятен убывает до нуля. Получающаяся диаграмма распределения пятен по широтам в функции времени напоминает бабочек. Ее часто называют «бабочками» Маундера, по фамилии ученого впервые построившего такую зависимость (Рис. 2) [1,2].
Вид внешних частей солнечной короны сильно зависит от фазы солнечной активности. В период минимума солнечной активности корона имеет «приглаженный» симметричный вид (Рис. 3), а в периоды максимума более сложный «растрепанный» вид [1].
В начале прошлого XX столетия исследователями Солнца было внесено понятие активных долгот. Речь идет о существовании отдельных долготных интервалов в 30–40 о , проявляющих повышенную активность в течение нескольких (от 1 до нескольких) 11-летних солнечных циклов. Также удалось установить, что эти активные долготы не связаны с дифференциальным вращением Солнца [2].
На протяжении примерно 70 лет (с 1645 по 1715 г.г.) солнечных пятен практически не было. Это явление получило название минимума Маундера. Радиоуглеродным методом удалось установить, что аналогичные минимумы то большей, то меньшей глубины и продолжительности имели место и раньше каждые несколько веков. Однако, не смотря на отсутствие пятен, 11-летние периоды солнечного магнетизма все же проявляли себя [1,2].
Со времени открытия МПС были предложены целый ряд гипотетических моделей генерации этих полей. Эти модели можно условно подразделить на три типа гипотез. 1- й тип: те, которые предполагают причины солнечной активности за пределами
Солнца; 2-й тип: те, которые предполагают причины солнечной активности в самом Солнце и 3-й тип промежуточный [2,4]. Последним словом гипотетических моделей является, как ее сторонники называют, «господствующая динамо теория», которая основана на усилении затравочного незначительного магнитного поля асимметричными потоками (вихрями) электропроводной среды. Для полной ясности приведем цитату из [1], поясняющую динамо процессы в упрощенном виде: «далеко не всякий вид движений электропроводной среды способно приводить к усилению магнитных полей. Как показали специальные исследования, никакие симметричные движения, сводящиеся к двумерным или центрально-симметричным, осе – симметричным или зеркально-симметричным, не способны привести к устойчивому усилению поля и, в конечном счете, вызывают диссипацию (исчезновение) его. Тип движений способный привести к усилению поля, схематически показан на рис. 4. Представим себе исходную магнитную трубку (вещество с вмороженным в него полем) в виде тора (1). Если движения вещества таковы, что, растягивая тор, они перекручивают его в «восьмерку» (2), а затем складывают эту «восьмерку» в два кольца (3), так что в результате получается тор тех же размеров, что и вначале, то напряженность поля станет в два раза больше, чем в исходной ситуации (1), при сохранении геометрии поля». Однако в этой гуще случайных событий, трудно представить, что этот вид движений будет идти именно в нужном направлении.
Сущность предлагаемой модели МПС. В данной работе автор предлагает альтернативную теоретическую модель, призванную описать генерацию и инверсионно -циклическое развитие МПС. Эта модель, являясь универсальной, логически вписывается в имеющиеся данные и факты магнетизма Солнца и не требует особых условий для ее реализации. Необходимыми условиями являются наличие вращения небесного тела вокруг своей оси, существование проводящих слоев в его толще и затравочного (внешнего или собственного) магнитного поля [5].
Если проводящий шар (Солнце) вращается вокруг собственной оси в магнитном поле (затравочное поле), имеющем составляющую вектора индукции Bo, направленную вдоль оси вращения с юга на север (рис.5, а), то на каждый заряд (электрон, протон, ион), находящийся в нем и вращающийся вместе с ним, с линейной скоростью
v=ω·r
действует сила Лоренца со стороны затравочного магнитного поля
F=q·v·Bo·sinα
где ω – угловая скорость вращения, r – расстояние от оси вращения до заряда q. Угол α = 90 º т.к. векторы v и Bo перпендикулярны. Применив соответствующее правило (левой руки) легко убедиться, что эта сила разделяет свободные заряды, отрицательные – к оси вращения, а положительные – к внешнему краю вращающегося шара. В результате длительного действия этих сил на свободные заряды во вращающемся теле образуются две кольцевые области в виде полых концентрических цилиндров, имеющие некомпенсированные противоположные заряды, отрицательная Q– (внутреннее кольцо) вблизи оси вращения, и положительная Q+ (внешнее кольцо) дальние от оси вращения края шара (небесного тела) (рис.5, а). Эти области имеют суммарные некомпенсированные заряды противоположного знака, равные по модулю
|Q+| = |Q–|.
При вращении небесного тела вокруг собственной оси эти области, вращаясь вместе с ней, создают концентрические кольцевые токи противоположного направления (I+ – с запада на восток и I– – с востока на запад).
I+=Q+/T;I–=Q–/T,
где T – период вращения. Эти кольцевые токи создадут собственные магнитные поля с векторами индукции B+ и B– соответственно. Определив направления кольцевых токов и их полей (правило буравчика), легко убедиться, что направления векторов B+, B– и Bo в промежутке между кольцевыми токами I+ и I– совпадают и взаимно усиливают друг друга, следовательно, способствуют дальнейшему разделению зарядов и увеличению магнитных сил отталкивания (закон Ампера) между этими кольцевыми токами противоположного направления. Заметим, что наряду с магнитным полем возникнет и электрическое поле, противодействующее разделению зарядов. Однако это электрическое поле, практически полностью, будет экранировано [6], разделяющим кольцевые области, высоко проводящим веществом солнечной плазмы. Таким образом, этот механизм сохраняет «жизнеспособность» и в отсутствие затравочного поля Bo. При этом значение вектора индукции B собственного магнитного поля вращающегося небесного тела (шара) в каждой точке пространства вне и внутри шара определяется суперпозицией векторов B+ и B–. В дальнейшем главным необходимым условием существования и развития собственного магнитного поля небесного тела становится лишь наличие его вращения вокруг собственной оси [5].
Проанализируем существование и дальнейшее развитие этой модели генерации магнитного поля применительно к условиям Солнца. Итак, мы имеем два кольцевых тока I+ и I– в проводящей плазме Солнца (Рис.5, а). По мере накопления зарядов растут силы магнитного отталкивания между кольцевыми токами (закон Ампера), а также силы электрического отталкивания между близлежащими одноименными зарядами внутри каждого кольца (стремление некомпенсированного заряда к поверхности проводящей среды [6]). Результирующее действие этих сил в течение длительного времени приведет к росту диаметров обоих кольцевых областей и постепенному входу внешней кольцевой области Q+ в пределы конвективной зоны, где ее северные и южные концы начнут разрушать конвективные процессы. В то же самое время внутри достаточно расширившейся полости внутреннего кольца Q–, под действием той же силы Лоренца, начнет зарождаться новая (зародышевая) кольцевая область с положительным некомпенсированным зарядом q+ вокруг оси вращения Солнца, т.е. зарождается новый кольцевой ток J+ (Рис.5, б). Отметим, что зарождение этого кольцевого тока есть начало инверсии МПС в будущем.
Количество зарядов в этом зародышевом кольце q+ постепенно растет, набирая силу и расширяясь в диаметре. Рост количества зарядов в этой области q+ сопровождается одновременным убыванием их во внешней области Q+ за счет
потерь по причине их разрушения конвективными процессами. В этот период равновесие зарядов Солнца в целом сохраняется и выражается как
|Q–| = |Q+| + |q+|.
Таким образом, в этот период в солнечном шаре образуются три концентрических кольцевых тока I+, I– и J+, которые создают магнитные поля с векторами индукции B+, B– и b+ соответственно. При дальнейшем развитии МПС расширение колец приведет к постепенному входу внешнего кольца Q+ сначала в пределы конвективной зоны, затем (через процесс образования пятен) и через фотосферу к внешнему краю активно вращающейся части солнечной атмосферы, вплоть до полного уничтожения его конвективными и прочими процессами Солнца (Рис.5, в, г). К этому времени кольцевая область q+ станет полноценным кольцевым током, и количество зарядов в ней достигнет до уровня количества зарядов в кольце Q– т.е.,
|Q–| = |q+|.
Этим завершается первая 11-летняя часть инверсионного цикла основного (дипольного) поля Солнца, составляющий половину одного полного 22-летнего цикла (Рис.5, д). Должно быть, читателю уже стал ясен сценарий дальнейшего непрерывного инверсионно-циклического развития МПС. Оно сопровождается расширением колец Q– и q+, образованием нового зародышевого кольца q– вокруг оси Солнца с отрицательным некомпенсированным зарядом (Рис.5, е), и дальнейшим циклическим повторением процесса. Одним словом течение этого процесса в целом аналогично инверсионно – циклическому развитию магнитного поля Земли [5], с учетом поправок на отличия во внутреннем строении и других параметров Солнца и его атмосферы. Математическое обеспечение этой модели МПС также аналогично земному, которое подробно приведено в [5], и поэтому здесь не дается. Это и есть краткое описание модели основного магнитного поля Солнца (иногда его называют дипольным или полоидальным), которое имеет непрерывное инверсионно – циклическое развитие. Кроме этого основного магнитного поля на Солнце наблюдаются, упомянутые выше, магнитные поля солнечных пятен, механизму возникновения которых, посвящается нижеследующий абзац.
Образование солнечных пятен. Любая модель, посвященная объяснению МПС должна содержать описание процесса образования солнечных пятен (далее пятен). Для этого обратимся к некоторым известным процессам, происходящим в атмосфере Земли – к вихрям (циклоны, тайфуны, торнадо, смерчи). Сравнение параметров земной атмосферы с параметрами атмосферы Солнца, включая конвективную зону, (вертикальную мощность, высокую температуру, бурлящее кипение), дает полную уверенность в том, что в солнечной атмосфере вихри (назовем их солнечными торнадо) гигантских, соответствующих параметрам атмосферы Солнца, размеров и мощностей есть явления часто происходящие. В те периоды, когда в эти солнечные торнадо вовлекаются части кольцевых областей с некомпенсированными зарядами (Рис. 5, б–е), очень сильное вращение некомпенсированного заряда в торнадо создает сильные магнитные поля (помимо основного дипольного поля). Этот процесс на фотосфере Солнца наблюдается в виде пятен. Темный цвет пятен автор связывает не спадом температур как в [1, 2], а отсутствием возможности для рекомбинации (зарядов) ионов вследствие очень сильного разделения зарядов быстрым вращением плазмы в мощном магнитном поле (сила Лоренца). Автор также придерживается мнения, что магнитные поля в пятнах являются локальными и виртуальными (временными) полями. Эти поля лишь косвенно связаны с основным инверсионно-циклически развивающимся (дипольным) магнитным полем Солнца. Они появляются при условии совмещения кольцевой области с некомпенсированным зарядом с соответствующим солнечным торнадо, «проглотившим» клочок этой кольцевой области, следовательно, обусловлены не общепринятыми магнитными трубками [1, 2] вмороженного тороидального поля, т.е. никакого тороидального поля вовсе не существует. Здесь важно понять то, что не все торнадо могут образовать пятна, а лишь «проглотившие» клочок некомпенсированного заряда от кольцевой области. Все сопутствующие явления вокруг солнечного пятна связаны с процессами развития и угасания соответствующего торнадо в реальных условиях высоких температур, быстрых движений и бурлящего кипения. Второму концу (хвосту) торнадо касаться или не касаться (оставаться ниже или выше) фотосферы, конечно, решают соответствующие процессы в атмосфере Солнца. С другой стороны солнечные вихри могут быть как восходящими (начинаться со стороны конвективной зоны), так и нисходящими (начинаться со стороны хромосферы). Это создает дополнительные трудности при объяснении наблюдаемых процессов. Пятна могут наблюдаться группами оттого, что около основного крупного торнадо часто образуются вторичные вихри поменьше [7]. Чтобы глубже понять эти процессы следует глубже изучить, более доступные нам, земные вихри (циклоны, тайфуны, торнадо, смерчи). Должно быть, они подчиняются одним и тем же законам природы. Известно, что направление вращения крупных земных вихрей в разных полушариях Земли разное. В северном полушарии – против часовой стрелки, а в южном – по часовой стрелке, если смотреть сверху [7]. Этот закон природы действует и на солнечные вихри. Это положение дает объяснение тому, что магнитные поля ведущих пятен в северном и южном полушариях Солнца имеют противоположные направления. Оно также, через понимание процессов в солнечных пятнах, дает возможность прийти к очень важному обратному умозаключению, что направление вращения вихрей (быть может, и процесс образования вихрей) определяется основным магнитным полем небесного тела.
Диаграмма «бабочек» Маундера. Со времени первого получения подобных диаграмм прошло уже более века, но природа этих периодичных диаграмм в виде «бабочек» до настоящего времени остается загадкой. Однако если рассматривать процессы с точки зрения модели, предложенной автором, то объяснения этих диаграмм «приходят» сами собой (Рис. 5). Ведь пятна могут образоваться лишь в тех поясах, где происходят соприкосновения расширяющейся кольцевой области с некомпенсированным зарядом в форме полого цилиндра с конвективной зоной. В процессе расширения кольцевых областей, с течением времени, по обе стороны от экватора широты этих поясов убывают. Цикл завершается, когда конвективная зона полностью раскромсает в клочья расширяющуюся кольцевую область с некомпенсированным зарядом (см. Рис. 5 связывая по вертикали с Рис. 6) и широты этих поясов достигнут до нуля. А к тому времени расширяющаяся следом кольцевая область с противоположным некомпенсированным зарядом уже успевает подойти вплотную к конвективной зоне со сторон более высоких широт (Рис. 5, д) и процесс повторяется в следующем 11-летнем цикле солнечных пятен.
Активные долготы. Описание предложенной модели выше велось для идеального случая протекания солнечных процессов, где кольцевые области с некомпенсированными зарядами представляют собой симметричных полых цилиндрических поверхностей правильной формы. Однако в реальном процессе эти кольцевые области далеки от идеала (серые кольца 2, 3 на Рис.7). Явления активных долгот вызваны несимметричностью и неравномерностью толщины внешней кольцевой области с некомпенсированным зарядом, недостатки которой будут переняты («унаследованы» через магнитное поле) вновь образованными внутренними кольцевыми областями. Таким образом, первопричины этих неравномерностей находятся во внутренних областях зарождения колец (Рис. 5), поэтому и не связаны с дифференциальным вращением. При этом долготы, которые совпадают с широкими участками внешнего кольца (отмечены кружками на Рис. 7), должны проявлять высокую активность, чем другие участки. Из вышеизложенного следует, что активные долготы проявляют себя в нескольких 11-летних циклах, т. к. их первопричины «наследуются» и находятся в околоосевых зонах Солнца, где зарождаются кольцевые области с некомпенсированными зарядами.
Минимумы солнечной активности. Солнечный «климат», так же как земной, видимо периодами бывает суровым (активным), или тихим (без торнадо). Если нет крупных солнечных торнадо, следовательно, и нет пятен, т.к. в процессе образования пятен необходимо совмещение торнадо с частью кольцевой области с некомпенсированным зарядом. В периоды минимума солнечной активности отсутствие крупных торнадо не означает абсолютное спокойствие, т.к. в эти периоды разрушителями кольцевых областей являются бурлящее конвективное течение и относительно мелкие вихри (не наблюдаемые с Земли), которые создают магнитные поля от десятков до сотен Гаусс. В эти периоды относительного спокойствия все остальные процессы, кроме торнадо, (основное инверсионно – циклическое (дипольное) магнитное поле Солнца и его 11- и 22-летние циклы) протекают без особенностей.
Выводы. Основной целью данной работы является информирование ведущих специалистов в области астрофизики и других читателей, о выдвинутой автором модели генерации и непрерывного инверсионно-циклического развития магнитных полей Солнца, претендующей на научное открытие. Эта точка зрения опирается на фундаментальных законах электродинамики и, по мнению автора, основывается на новом явлении (эффекте) – генерации собственного магнитного поля проводящих тел, вращающихся вокруг собственной оси во внешнем или собственном (затравочном) магнитном поле, вследствие разделения зарядов под действием сил Лоренца [5]. Это явление проливает свет на многие факты магнетизма Солнца, как инверсии МПС, образования пятен и диаграммы «бабочек», активные долготы и т.п., доселе считающиеся загадочными. Эта точка зрения является универсальной для описания магнетизма планет и звезд.