Меню

Хромосфера солнца условия наблюдения

Хромосфера солнца условия наблюдения

Хромосфера это неоднородный по структуре слой солнечной атмосферы, расположенный непосредственно над фотосферой. Название происходит от др.греч. χρομα — цвет, σφαιρα — шар, сфера, «сфера цвета». Хромосфера названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг чёрного диска Луны, только что затмившего Солнце.

Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы. Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше.

Общая протяжённость хромосферы 10–15 тыс. километров. Температура хромосферы растет с высотой от 6000 К до примерно 20 000 К. При такой температуре в хромосфере Солнца формируется интенсивное излучение в линиях атома водорода, в частности в линии H-альфа.

Одной из наиболее интересных деталей, которые можно наблюдать в хромосфере на изображениях в линии H-альфа, являются протуберанцы, представляющие собой области плотной холодной плазмы, проникающие высоко в корону и по этой причине видимые над солнечным лимбом. Излучение хромосферы Солнца в линии H-альфа лежит в видимой области спектра и имеет яркий красный цвет.

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в неё из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.


фраунгоферовы линии в видимой части спектра ЭМ-волн

Многие детали на поверхности хромосферы также видны в линии излучения ионизованного кальция Ca II, расположенной в фиолетовой части солнечного спектра. Это излучение обнаружено и на других звездах солнечного типа. Благодаря этому мы теперь знаем не только о хромосфере Солнца, но и о хромосфере далеких звезд.
(источник: Солнечная космическая обсерватория ТЕСИС)

хромосфера в линии излучения Hα
с длиной волны λ = 6562,8 Å
хромосфера в линии излучения ионизованного кальция Ca II
с длиной волны λ = 3934 Å (линия К)

Серия изображений Солнца 23 июля 2004 г.
Следующие 6 изображений Солнца показывают, как меняется структура солнечной атмосферы при продвижении вверх от фотосферы, через хромосферу, переходный слой в корону и солнечный ветер. Указаны основные видимые структуры и верхние значения их температур. АО — активные области Солнца.
(источник: Э.В. Кононович и др. «Жизнь Земли в атмосфере Солнца»)

Фотосфера
Т = 6500 К,
видны факелы и группы пятен
линия ионизированного гелия
λ = 3040 Å (304 нм), He II,
(ультрафиолет) Т = 80 000 К,
видны хромосферная сетка, яркие флоккулы и волокна
линия ионизированного железа
λ = 1710 Å (171 нм), Fe IX, X, (ультрафиолет) T = 1 300 000 K,
видны переходный слой между хромосферой и короной, АО,
корональные дыры
линия ионизированного железа
λ = 1950 Å (195 нм), Fe XII, (ультрафиолет) Т = 1 600 000 К,
видна структура спокойной короны
линия ионизированного железа
λ = 2840 Å (284 нм) , Fe XV,
(ультрафиолет) T = 2 000 000 K,
видна структура активных областей в короне: яркие поля флоккулов, яркие рентгеновские точки и дуги.
Внешняя корона и солнечный ветер
28 октября 2003

Все 6 снимков, расположенных выше, получены от солнечной обсерватории SOHO. Вы можете посмотреть изображение Солнца на текущую дату (−1 день), используя специальный браузер, созданный Кристианом Ларсеном (Kristian Pontoppidan Larsen). Он — специалист по прикладной физике из Дании и поклонник SOHO, которому нравится создавать прикладные web-программы и изучать связь между Солнцем, погодой и климатом.

Пояснения к программе К. Ларсена:
Двигая ползунок шкалы, расположенной сразу под изображением Солнца, вы можете рассмотреть Солнце в 4 линиях спектра с фиксированной температурой солнечного вещества, а так же в промежутках между ними. Завершают шкалу изображения, получаемые с помощью прибора Michelson Doppler Imager (MDI). Этот инструмент получает карты магнитного поля Солнца и скоростей вещества на высоте формирования линии наблюдений). MDI-Cont в линии ионизированного никеля Ni I с длиной волны λ = 6768 Å (676,8 нм), на которых можно видеть солнечные пятна, и MDI-Mag — магнитограмма солнечной поверхности с черно-белым изображением полярности пятен. Сейчас (12.09.09) крупных пятен на Солнце нет, но маленькие образования все же видны.

EIT (Extreme ultraviolet Imaging Telescope) — изображения экстремального ультрафиолетового телескопа. Изображения солнечной атмосферы представлены в нескольких длинах волн, и поэтому, показывают солнечный материал при различных температурах.
В изображениях, с длиной волны λ = 3040 Å (304 нм),
представлен яркий материал с температурой 60 000–80 000 кельвинов.
Чем выше температура, тем выше расположен данный слой в солнечной атмосфере.
При λ = 1710 Å (171 нм), Т = 1 000 000 К,
при λ = 1950 Å (195 нм), Т = 1 500 000 К,
при λ = 2840 Å (284 нм), Т = 2 000 000 К.

Часто во время затмений над поверхностью Солнца можно наблюдать причудливой формы «фонтаны», «облака», «воронки», «кусты», «арки» и прочие ярко светящиеся образования из хромосферного вещества. А не дожидаясь затмений — при помощи спектрографа или фильтра, выделяющего из общего потока солнечного излучения линию H-альфа, на поверхности хромосферы Солнца можно увидеть множество интересных деталей: яркие флокулы вокруг солнечных пятен, темные волокна, лежащие на диске, и протуберанцы над солнечным лимбом. Это самые грандиозные образования солнечной атмосферы.

Они бывают неподвижными или медленно изменяющимися, окружёнными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из неё, поднимаясь на десятки и сотни тысяч километров. При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска тёмными, длинными и изогнутыми волокнами.

Протуберанцы имеют примерно туже плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.


Жансен (Janssen) Пьер Жюль Сезар
(1824–1907)

Локьер (Lockyer)
Джозеф Норман

(1836–1920)

Впервые спектр протуберанца вне затмения рассмотрел французский астроном Жансен Пьер Жюль Сезар (Janssen, Pierre Jules César) в Гунтуре, маленьком городке на восточном побережье Индии, во время наблюдения полного солнечного затмения 18 августа 1868 г.

Читайте также:  Луч солнца золотого ноты голос

В момент, когда сверкающий диск Солнца был полностью закрыт Луной, Жансен, исследуя с помощью спектроскопа оранжево-красные языки пламени, вырывавшиеся с поверхности Солнца, увидел в спектре, кроме трех знакомых линий водорода: красной, зелено-голубой и синей, новую, незнакомую — ярко-желтую. Ни одно из веществ, известных химикам того времени, не имело такой линии в той части спектра, где ее обнаружил Пьер Жюль Жансен.

Такое же открытие, независимо от Жансена, но у себя дома, в Англии, сделал Джозеф Норман Локьер (Lockyer, Joseph Norman).

25 октября 1868 г. парижская Академия наук получила два письма. Одно, написанное на следующий день после солнечного затмения (19 августа 1868 г.), пришло из Индии от Жансена; другое письмо, от 20 октября 1868 г. было из Англии от Локьера.

Письма обоих ученых были зачитаны на заседании Парижской Академии наук 26 октября с интервалом в несколько минут. В них Жансен и Локьер, независимо один от другого, сообщили об открытии одного и того же «солнечного вещества».

Это новое вещество, найденное на поверхности Солнца с помощью спектроскопа, спустя два года Локьер совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил называть «гелий» от греческого слова «солнце» — «гелиос».

Такое совпадение материалов работ свидетельствовало об объективном характере открытия нового химического вещества. Академики, пораженные столь странным совпадением, приняли постановление выбить в честь открытия вещества солнечных факелов (протуберанцев) золотую медаль.

На одной стороне этой медали выбиты портреты Жансена и Локьера, а на другой — изображение древнегреческого бога солнца Аполлона в колеснице, запряженной четверкой коней. Над колесницей надпись на французском языке: «Анализ солнечных выступов 18 августа 1868 г.».

Для наблюденя щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения. Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих её газов.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки. Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.
Пятна, факелы, протуберанцы, хромосферные вспышки — всё это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше. В хромосфере можно наблюдать появление и исчезновение поствспышечных магнитных петель. Природа этих процессов и исследование их особенностей являются одним из важных предметов современной физики Солнца.

Источник

Атмосфера Солнца: Фотосфера, Хромосфера и Солнечная корона

Из чего состоит атмосфера нашей звезды, чем фотосфера отличается от хромосферы и почему у Солнца есть корона?

Земная атмосфера – это воздух, которым мы дышим, привычная нам газовая оболочка Земли. Такие оболочки есть и у других планет. Звезды целиком состоят из газа, но их внешние слои также именуют атмосферой. При этом внешними считаются те слои, откуда хотя бы часть излучения может беспрепятственно, не поглощаясь вышележащими слоями, уйти в окружающее пространство.

Фотосфера – атмосфера Солнца

Фотосфера – атмосфера Солнца начинается на 200-300 км глубже видимого края солнечного края. Эти самые глубокие слои атмосферы называют фотосферой. Поскольку их толщина составляет не более одной трехтысячной доли солнечного радиуса, фотосферу иногда условно называют поверхностью Солнца.

Фотосфера – солнечная атмосфера. Именно её мы, собственно, и видим с Земли

Плотность газов в фотосфере примерно такая же, как в земной стратосфере, и в сотни раз меньше, чем у поверхности Земли. Температура фотосферы уменьшается от 8000 К на глубине 300 км до 4000 К в самых верхних слоях.

Солнечная поверхность, наблюдаемая в телескоп в видимом диапазоне длин волн, представляется совокупностью ярких площадок, окружённых относительно тёмными тонкими промежутками. Это – солнечные гранулы, их размеры различны и составляют в среднем 700 км, “время жизни” (появление и угасание гранулы) примерно 8 мин. Гранулы разделяются тёмными промежутками шириной около 300 км.

Температура же того среднего слоя, излучение которого мы воспринимаем, около 6000 К. При таких условиях почти все молекулы газа распадаются на отдельные атомы. Лишь в самых верхних слоях фотосферы сохранятся относительно немного простейших молекул и радикалов типа H2, OH, CH.

Особую роль в солнечной атмосфере играет не встречающийся в земной природе отрицательный ион водорода, который представляет собой протон с двумя электронами. Это необычное соединение возникает в тонком внешнем, наиболее холодном слое фотосферы при “налипании” на нейтральные атомы водорода отрицательно заряженных свободных электронов, которые поставляются легко ионизуемыми атомами кальция, натрия, магния, железа и других металлов.

При возникновении отрицательные ионы водорода излучают большую часть видимого света. Этот же свет ионы жадно поглощают, из-за чего непрозрачность атмосферы с глубиной быстро растет. Поэтому видимый край Солнца и кажется нам очень резким.

Почти все наши знания о Солнце основаны на изучении его спектра – узенькой разноцветной полоски, имеющей ту же природу, что и радуга. Впервые, поставив призму на пути солнечного луча, такую полоску получил Ньютон и воскликнул: “Спектрум!” (лат. spectrum – “видение”). Позже в спектре Солнца заметили темные линии и сочли их границами цветов.

В телескоп с большим увеличением можно наблюдать тонкие детали фотосферы: вся она кажется усыпанной мелкими яркими зернышками – гранулами, разделенными сетью узких темных дорожек. Грануляция является результатом перемешивания всплывающих более теплых потоков газа и опускающихся более холодных.

Разность температур между ними в наружных слоях сравнительно невелика (200-300 К), но глубже, в конвективной зоне, она больше, и перемешивание происходит значительно интенсивнее. Конвекция во внешних слоях Солнца играет огромную роль, определяя общую структуру атмосферы. В конечном счете именно конвекция в результате сложного взаимодействия с солнечными магнитными полями является причиной всех многообразных проявлений солнечной активности. Магнитные поля участвуют во всех процессах на Солнце.

Читайте также:  Ученый открыл что планеты вращаются вокруг солнца

Временами в небольшой области солнечной атмосферы возникают концентрированные магнитные поля, в несколько тысяч раз более сильные, чем на Земле. Ионизованная плазма – хороший проводник, она не может перемещаться поперек линий магнитной индукции сильного магнитного поля. Поэтому в таких местах перемешивание и подъем горячих газов снизу тормозится, и возникает темная область – солнечное пятно. На фоне ослепительной фотосферы оно кажется совсем черным, хотя в действительности яркость его слабее только в десять.

С течением времени величина и форма пятен сильно меняются. Возникнув в виде едва заметной точки – поры, пятно постепенно увеличивает свои размеры до нескольких десятков тысяч километров. Крупные пятна, как правило, состоят из темной части (ядра) и менее темной – полутени, структура которой придает пятну вид вихря. Пятна бывают окружены более яркими участками фотосферы, называемыми факелами или факельными полями.

Фотосфера постепенно переходит в более разреженные внешние слои солнечной атмосферы – хромосферу и солнечную корону.

Хромосфера Солнца

Хромосфера Солнца (греч. “сфера цвета”) названа так за свою красновато-фиолетовую окраску. Она видна во время полных солнечных затмений как клочковатое яркое кольцо вокруг черного диска Луны, только что затмившего Солнце. Хромосфера весьма неоднородна и состоит в основном из продолговатых вытянутых язычков (спикул), придающих ей вид горящей травы.

Во время полного солнечно затмения, когда диск Солнца скрыт от наших глаз, мы видим хромосферу – тонкий яркий ореол по краям солнечного диска

Температура этих хромосферных струй в два-три раза выше, чем в фотосфере, а плотность в сотни тысяч раз меньше. Общая протяженность хромосферы 10-15 тыс. километров.

Рост температуры в хромосфере объясняется распространением волн и магнитных полей, проникающих в нее из конвективной зоны. Вещество нагревается примерно так же, как если бы это происходило в гигантской микроволновой печи. Скорости тепловых движений частиц возрастают, учащаются столкновения между ними, и атомы теряют свои внешние электроны: вещество становится горячей ионизованной плазмой. Эти же физические процессы поддерживают и необычайно высокую температуру самых внешних слоев солнечной атмосферы, которые расположены выше хромосферы.

Наиболее распространены “спокойные” протуберанцы, появление которых обычно связано с развитием группы пятен, но существуют они значительно дольше пятен (до 1 года). Непосредственно в зоне пятен наблюдаются после вспышек, протуберанцы солнечных пятен – потоки газа, втекающего из короны в зону пятен со скоростями в неск. десятков км/с. Другой вид протуберанцев связан с выбросами вещества вверх (обычно после вспышек) со скоростями 100-1000 км/с (быстрые эруптивные протуберанцы).

Над поверхностью Солнца можно наблюдать причудливой формы “фонтаны”, “облака”, “воронки”, “кусты”, “арки” и прочие ярко светящиеся образования из хромосферного вещества. Они бывают неподвижными или медленно изменяющимися, окруженными плавными изогнутыми струями, которые втекают в хромосферу или вытекают из нее, поднимаясь на десятки и сотни тысяч километров. Это самые грандиозные образования солнечной атмосферы – протуберанцы.

При наблюдении в красной спектральной линии, излучаемой атомами водорода, они кажутся на фоне солнечного диска темными, длинными и изогнутыми волокнами.

Протуберанцы имеют примерно ту же плотность и температуру, что и хромосфера. Но они находятся над ней и окружены более высокими, сильно разреженными верхними слоями солнечной атмосферы. Протуберанцы не падают в хромосферу потому, что их вещество поддерживается магнитными полями активных областей Солнца.

Впервые спектр протуберанца вне затмения наблюдали французский астроном Пьер Жансен и его английский коллега Джозеф Локьер в 1868 г. Щель спектроскопа располагают так, чтобы она пересекала край Солнца, и если вблизи него находится протуберанец, то можно заметить спектр его излучения.

Направляя щель на различные участки протуберанца или хромосферы, можно изучить их по частям. Спектр протуберанцев, как и хромосферы, состоит из ярких линий, главным образом водорода, гелия и кальция. Линии излучения других химических элементов тоже присутствуют, но они намного слабее.

Некоторые протуберанцы, пробыв долгое время без заметных изменений, внезапно как бы взрываются, и вещество их со скоростью в сотни километров в секунду выбрасывается в межпланетное пространство. Вид хромосферы также часто меняется, что указывает на непрерывное движение составляющих ее газов.

Иногда нечто похожее на взрывы происходит в очень небольших по размеру областях атмосферы Солнца. Это так называемые хромосферные вспышки (самые мощные взрывоподобные процессы, могут продолжаться всего несколько минут, но за это время выделяется энергия, которая иногда достигает 1025 Дж).

Они длятся обычно несколько десятков минут. Во время вспышек в спектральных линиях водорода, гелия, ионизованного кальция и некоторых других элементов свечение отдельного участка хромосферы внезапно увеличивается в десятки раз. Особенно сильно возрастает ультрафиолетовое и рентгеновское излучение: порой его мощность в несколько раз превышает общую мощность излучения Солнца в этой коротковолновой области спектра до вспышки.

Пятна, факелы, протуберанцы, хромосферные вспышки – все это проявления солнечной активности. С повышением активности число этих образований на Солнце становится больше.

Солнечная корона

Корона – в отличие от фотосферы и хромосферы самая внешняя часть атмосферы Солнца обладает огромной протяженностью: она простирается на миллионы километров, что соответствует нескольким солнечным радиусам, а ее слабое продолжение уходит еще дальше.

Солнечная корона, снимок сделан опять же во время полного солнечного затмения

Плотность вещества в солнечной короне убывает с высотой значительно медленнее, чем плотность воздуха в земной атмосфере. Уменьшение плотности воздуха при подъеме вверх определяется притяжением Земли. На поверхности Солнца сила тяжести значительно больше, и, казалось бы, его атмосфера не должна быть высокой.

В действительности она необычайно обширна. Следовательно, имеются какие-то силы, действующие против притяжения Солнца. Эти силы связаны с огромными скоростями движения атомов и электронов в короне, разогретой до температуры 1-2 млн градусов!

Корону лучше всего наблюдать во время полной фазы солнечного затмения. Правда, за те несколько минут, что она длится, очень трудно зарисовать не только отдельные детали, но даже общий вид короны. Глаз наблюдателя едва лишь начинает привыкать к внезапно наступившим сумеркам, а появившийся из-за края Луны яркий луч Солнца уже возвещает о конце затмения. Поэтому часто зарисовки короны, выполненные опытными наблюдателями во время одного и того же затмения, сильно различались. Не удавалось даже точно определить ее цвет.

Читайте также:  Движение системы земля луна движение земли вокруг солнца

Изобретение фотографии дало астрономам объективный и документальный метод исследования. Однако получить хороший снимок короны тоже нелегко. Дело в том, что ближайшая к Солнцу ее часть, так называемая внутренняя корона, сравнительно яркая, в то время как далеко простирающаяся внешняя корона представляется очень бледным сиянием. Поэтому если на фотографиях хорошо видна внешняя корона, то внутренняя оказывается передержанной, а на снимках, где просматриваются детали внутренней короны, внешняя совершенно незаметна.

Чтобы преодолеть эту трудность, во время затмения обычно стараются получить сразу несколько снимков короны – с большими и маленькими выдержками. Или же корону фотографируют, помещая перед фотопластинкой специальный “радиальный” фильтр, ослабляющий кольцевые зоны ярких внутренних частей короны. На таких снимках ее структуру можно проследить до расстояний во много солнечных радиусов.

Уже первые удачные фотографии позволили обнаружить в короне большое количество деталей: корональные лучи, всевозможные “дуги”, “шлемы” и другие сложные образования, четко связанные с активными областями.

Главной особенностью короны является лучистая структура. Корональные лучи имеют самую разнообразную форму: иногда они короткие, иногда длинные, бывают лучи прямые, а иногда они сильно изогнуты. Еще в 1897 г. пулковский астроном Алексей Павлович Ганский обнаружил, что общий вид солнечной короны периодически меняется. Оказалось, что это связано с 11-летним циклом солнечной активности.

С 11-летним периодом меняется как общая яркость, так и форма солнечной короны.

В эпоху максимума солнечных пятен она имеет сравнительно округлую форму. Прямые и направленные вдоль радиуса Солнца лучи короны наблюдаются как у солнечного экватора, так и в полярных областях. Когда же пятен мало, корональные лучи образуются лишь в экваториальных и средних широтах. Форма короны становится вытянутой. У полюсов появляются характерные короткие лучи, так называемые полярные щеточки. При этом общая яркость короны уменьшается.

Эта интересная особенность короны, по видимому, связана с постепенным перемещением в течении 11-летнего цикла зоны преимущественного образования пятен. После минимума пятна начинают возникать по обе стороны от экватора на широтах 30-40°. Затем зона пятнообразования постепенно опускается к экватору.

Тщательные исследования позволили установить, что между структурой короны и отдельными образованиями в атмосфере Солнца существуют определенная связь. Например, над пятнами и факелами обычно наблюдаются яркие и прямые корональные лучи. В их сторону изгибаются соседние лучи. В основании корональных лучей яркость хромосферы увеличивается.

Такую ее область называют обычно возбужденной. Она горячее и плотнее соседних, невозбужденных областей. Над пятнами в короне наблюдаются яркие сложные образования. Протуберанцы также часто бывают окружены оболочками из корональной материи.

Корона оказалась уникальной естественной лабораторией, в которой можно наблюдать вещество в самых необычных и недостижимых на Земле условиях.

На рубеже XIX-XX столетий, когда физика плазмы фактически еще не существовала, наблюдаемые особенности короны представлялись необъяснимой загадкой. Так, по цвету корона удивительно похожа на Солнце, как будто его свет отражается зеркалом. При этом, однако, во внутренней короне совсем исчезают характерные для солнечного спектра фраунгоферовы линии. Они вновь появляются далеко от края Солнца, во внешней короне, но уже очень слабые.

Кроме того, свет короны поляризован: плоскости, в которых колеблются световые волны, располагаются в основном касательно к солнечному диску. С удалением от Солнца доля поляризованных лучей сначала увеличивается (почти до 50%), а затем уменьшается. Наконец, в спектре короны появляются яркие эмиссионные линии, которые почти до середины XX в. не удалось отождествить ни с одним из известных химических элементов.

Оказалось, что главная причина всех этих особенностей короны – высокая температура сильно разреженного газа. При температуре свыше 1 млн градусов средние скорости атомов водорода превышают 100 км/с, а у свободных электронов они еще раз в 40 больше. При таких скоростях, несмотря на сильную разреженность вещества (всего 100 млн частиц в куб см, что в 100 млрд раз разреженнее воздуха на Земле!), сравнительно часты столкновения атомов, особенно с электронами.

Силы электронных ударов так велики, что атомы легких элементов практически полностью лишаются всех своих электронов и от них остаются лишь “голые” атомные ядра. Более тяжелые элементы сохраняют самые глубокие электронные оболочки, переходя в состояние высокой степени ионизации.

Итак, корональный газ – это высокоионизованная плазма; она состоит из множества положительно заряженных ионов всевозможных химических элементов и чуть большего количества свободных электронов, возникающих при ионизации атомов водорода (по одному электрону), гелия (по два электрона) и более тяжелых атомов.

Поскольку в таком газе основную роль играют подвижные электроны, его часто называют электронным газом, хотя при этом подразумевается наличие такого количества положительных ионов, которое полностью обеспечивало бы нейтральность плазмы в целом.

Белый цвет короны объясняется рассеиванием обычного солнечного света на свободных электронах. Они не вкладывают своей энергии при рассеивании: колеблясь в такт световой волны, они лишь изменяют направление рассеиваемого света, при этом поляризуя его. Таинственные яркие линии в спектре порождены необычным излучением высокоионизированных атомов железа, аргона, никеля, кальция и других элементов, возникающим только в условиях сильного разрежения.

Наконец, линии поглощения во внешней короне вызваны рассеиванием на пылевых частицах, которые постоянно присутствуют в межзвездной среде. А отсутствие линии во внутренней короне связано с тем, что при рассеянии на очень быстро движущихся электронах все световые кванты испытывают столь значительные изменения частот, что даже сильные фраунгоферовы линии солнечного спектра полностью “замываются”.

Итак, корона Солнца – самая внешняя часть его атмосферы, самая разреженная и самая горячая. Добавим, что она и самая близкая к нам: оказывается, она простирается далеко от Солнца в виде постоянно движущегося от него потоках плазмы – солнечного ветра. Вблизи Земли его скорость составляет в среднем 400-500 км/с, а порой достигает почти 1000 км/с.

Распространяясь далеко за пределы орбит Юпитера и Сатурна, солнечный ветер образует гигантскую гелиосферу, граничащую с еще более разреженной межзвездной средой.

Фактически мы живем окруженные солнечной короной, хотя и защищенные от ее проникающей радиации надежным барьером в виде земного магнитного поля. Через корону солнечная активность влияет на многие процессы, происходящие на Земле (геофизические явления).

Источник

Adblock
detector