Какой была наша Вселенная до Большого взрыва?
Физикам-теоретикам и космологам приходится искать ответы на самые фундаментальные вопросы: «Почему мы здесь?», «Когда появилась Вселенная?» и «Как это произошло?» Однако несмотря на очевидную важность поиска ответов на эти вопросы, есть вопрос, который затмевает их всех своим интересом: «Что было до Большого взрыва?».
Вселенная слишком мало изучена.
Какой была Вселенная
Скажем откровенно: мы не можем ответить на этот вопрос. Никто не может. Но ведь никто не запрещает порассуждать на эту тему и рассмотреть несколько интересных предположений? С этим согласен, например, Шон Кэрролл из Калифорнийского технологического института. В прошлом месяце Кэрролл принимал участие на проходящей два раза в год встрече Американского астрономического сообщества, где он предложил несколько «предвзрывных» сценариев, чьим «финальным аккордом» могло бы стать появление нашей Вселенной. Опять же, это всего лишь рассуждения, а не теории, поэтому просим это учитывать.
«В то время, если можно так выразиться, еще не действовало тех законов физики, которые нам известны, потому что «тогда» их еще не существовало», — говорит Кэрролл.
«Когда физики говорят, что понятия не имеют, что тогда происходило, они говорят это на полном серьезе. Этот отрезок истории находится в абсолютно непроглядной тьме», — соглашается Питер Войт, физик-теоретик Колумбийского университета.
Одним из самых странных свойств нашей Вселенной является то, что она обладает очень низким уровнем энтропии. У этого термина имеется множество интерпретаций, но в данном случае речь идет о степени неупорядоченности. И в случае со Вселенной порядка в ней больше, чем беспорядка. Представьте себе бомбу, заполненную песком. Бомба взрывается, и содержащиеся в ней миллиарды миллиардов песчинок разлетаются в разные стороны – перед вами по сути макет Большого взрыва.
«Только вместо ожидаемого хаотичного разлета эти песчинки, представляющие материю нашей Вселенной, немедленно превращаются во множество готовых «песчаных замков», образовавшихся непонятно каким образом и без посторонней помощи», — говорит Стефан Кантримен, аспирант Колумбийского университета.
Результатом Большого взрыва могло (и, возможно, должно было) стать появление высокого уровня энтропии массы в виде неравномерно распределенной материи. Однако вместо этого мы видим звездные системы, галактики и целые галактические скопления, объединенные между собой. Мы видим порядок.
Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.
Что происходит с энтропией
Помимо этого, важно понимать, что энтропия, или неупорядоченность, со временем могут лишь увеличиваться – тот же песчаный замок рано или поздно и без посторонней помощи снова распадется на множество песчинок. Более того, как указывает Кэрролл, наше наблюдение за временем напрямую взаимосвязано с уровнем энтропии с самого появления Вселенной. При этом саму энтропию можно рассматривать как некое времязависимое физическое свойство, обладающее только одним направлением хода – в будущее.
Итак, энтропия, согласно законам физики, может только возрастать, однако нынешний ее уровень во Вселенной очень низок. По мнению Кэрролла, это может означать лишь одно: ранняя Вселенная обладала еще меньшим ее уровнем, то есть Вселенная должна была быть еще более организованной и упорядоченной. А это, в свою очередь, может наталкивать на мысль о том, что же было с нашей Вселенной собственно до самого Большого взрыва.
«Есть множество людей, считающих, что ранняя Вселенная была очень простой, неинтересной и невыразительной системой. Однако как только вы подключаете к этому вопросу энтропию, то перспектива тут же меняется, и вы понимаете, что в таком случае появляются вещи, которые необходимо объяснить», — продолжает Кэрролл.
Если даже отбросить в сторону энтропию, то перед нами останутся и другие не менее важные аспекты, которые необходимо каким-то образом подстроить под нашу нынешнюю Вселенную, в которой мы живем. Более того, в некоторых случаях низкий уровень энтропии кажется менее значимым, чем в других. Поэтому попытаемся рассмотреть три наиболее популярных предположения о том, что могло происходить со Вселенной до Большого взрыва.
Модель «Большого отскока»
Вот так все было. Или не было.
Согласно одной из гипотез, низкий уровень энтропии нашей Вселенной связан с тем, что ее появление само по себе стало результатом распада некоей «предыдущей» Вселенной. В этой гипотезе говорится, что наша Вселенная могла образоваться в результате стремительного сжатия («отскока»), управляемого сложными эффектами квантовой гравитации (сингулярностью), в свою очередь, породившими Большой взрыв. В свою очередь, это может говорить о том, что мы с одинаковым успехом можем жить как в любой точке бесконечной последовательности возникающих Вселенных, так и, наоборот, в «первой итерации» Вселенной.
Данную гипотетическую модель появления Вселенной еще иногда называют моделью «Большого отскока». Первое упоминание этого термина звучит еще в 60-х, однако в более-менее сформированную гипотезу эта модель превратилась лишь 80-х – начале 90-х годов.
Может ли Большой Разрыв привести к новому Большому Взрыву?
Среди менее значимых спорных моментов, у модели «Большого отскока» есть и явные недостатки. Например, идея коллапса в сингулярность противоречит общей теории относительности Эйнштейна – правилам, согласно которым работает гравитация. Физики считают, что эффект сингулярности может существовать внутри черных дыр, однако известные нам физические законы не могут предоставить нам механизм, позволяющий объяснить, почему «другая Вселенная», достигнув сингулярности, должна породить Большой взрыв.
«В общей теории относительности нет ничего, что указывало бы на «отскок» новой Вселенной в результате сингулярности», — говорит Шон Кэрролл.
Однако это не единственный большой спорный момент. Дело в том, что модель «Большого отскока» подразумевает наличие прямолинейного хода времени со снижающейся энтропией, однако, как говорилось выше, энтропия со временем только увеличивается. Другими словами, согласно известным нам законам физики, появление отскакивающей Вселенной невозможно.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Дальнейшее развитие модели привело к появлению гипотезы о том, что время во Вселенной может являться циклическим. Но при этом модель до сих пор не в состоянии объяснить, каким образом идущее в настоящее время расширение Вселенной сменится её сжатием. И все же это необязательно означает, что модель «Большого отскока» совершенно ошибочна. Вполне возможно, что наши нынешние теории о ней просто несовершенны и не до конца продуманы. В конце концов, физические законы, которые мы сейчас имеем, были выведены с учетом лимита, согласно которому мы способны наблюдать за Вселенной.
Модель «Спящей» Вселенной
«Возможно, до Большого взрыва Вселенная представляла собой некое очень компактное, медленно эволюционирующее статичное пространство», — теоретизируют такие физики, как Курт Хинтербихлер, Остин Джойс и Джастин Хури.
Эта «предвзрывная» Вселенная должна была обладать метастабильным состоянием, то есть быть стабильной до того момента, пока не появится еще более стабильное состояние. По аналогии представьте обрыв, на краю которого в состоянии вибрации находится валун. Любое касание до валуна приведет к тому, что он сорвется в пропасть или — что ближе к нашему случаю – произойдет Большой взрыв. Согласно некоторым теориям «предвзрывная» Вселенная могла существовать в ином виде, например, в форме сплюснутого и очень плотного пространства. В итоге этот метастабильный период подошел к концу: она резко расширилась и приобрела форму и состояние того, что мы видим сейчас.
«В модели «спящей» Вселенной, однако, тоже имеются свои проблемы», — говорит Кэрролл.
«Она тоже предполагает наличие у нашей Вселенной появления низкого уровня энтропии и при этом не объясняет, почему это так».
Однако Хинтербихлер, физик-теоретик из Университета Кейс Вестерн Резерв, не считает появление низкого уровня энтропии проблемой.
«Мы просто ищем объяснение динамики, происходившей до Большого взрыва, которая объясняет, почему мы видим то, что мы видим сейчас. Пока это лишь единственное, что нам остается», — говорит Хинтербихлер.
Кэрролл, тем не менее, считает, что есть еще одна теория «предвзрывной» Вселенной, которая способна объяснить низкий уровень энтропии, имеющийся в нашей Вселенной.
Модель «Мультивселенной»
Появление новых вселенных из «родительской Вселенной»
Гипотетическая модель Мультивселенной избегает недомолвок, связанных со снижением энтропии, как в случае с моделью «Большого отскока», и дает объяснение ее низкого уровня сегодня, говорит Кэрролл. Она берет свое начало из идеи об «инфляции» — хорошо принятой, но неполной модели Вселенной. Термин «инфляция» и первое объяснение этой модели были предложены 1981-м году физиком Аланом Гутом, в настоящий момент работающим в Массачусетском технологическом институте. Согласно данной модели, пространство после Большого взрыва резко расширилось. Настолько резко, что скорость этого расширения оказалась выше скорости света. Согласно квантовой механике, в космосе постоянно происходят случайные, едва заметные колебания энергии. В какой-то момент инфляционного периода пики этих колебаний достигли своего максимума и стали причиной появления галактик, пустот и крупномасштабных низкоэнтропийных структур, которые мы сегодня и наблюдаем во Вселенной.
Сама инфляционная модель была разработана на базе наблюдений за космическим реликтовым микроволновым излучением – самым древним типом излучения, появившимся спустя всего несколько сотен тысяч лет после Большого взрыва. Ученые считают, что инфляционная модель отлично предсказывает его существование.
Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.
Согласно одному из предположений, мультивселенная может являться результатом инфляции. В предположении говорится о том, что существует некая одна очень-очень большая Вселенная, время от времени порождающая более компактные вселенные. При этом никакая форма коммуникации между этими вселенными невозможна. Маркус Ву из PBS Nova объясняет:
«В начале 80-х годов физики пришли к мнению, что инфляция может обладать природой бесконечности, останавливаясь лишь в некоторых регионах космоса, создавая некие закрытые «карманы». Однако между этими «карманами» инфляция продолжается, и протекает она быстрее скорости света. В свою очередь, изолированные друг от друга «карманы» со временем становятся Вселенными».
Кэрроллу импонирует больше всего именно эта модель, хотя его собственная предложенная модель несколько отличается от того, что описано выше:
«Это лишь одна из версий теории о мультивселенной, однако основным отличием здесь является то, что «родительская Вселенная» может обладать высоким уровнем энтропии и порождает вселенные с низким ее уровнем», — говорит Кэрролл.
Согласно данной модели, до Большого взрыва было некое большое расширяющееся пространство, из которого родились наша и бесконечное множество других вселенных. Другие вселенные находятся за пределами наших возможностей их обнаружения и могли образоваться как до, так уже и после нашей Вселенной.
Следует отметить, что на данный момент это одна из самых популярных моделей. Тем не менее ученые, разумеется, по-разному ее воспринимают. Одни поддерживают эту идею, другие, наоборот, совершенно с ней не согласны. Но если брать в пример Питера Войта из Колумбийского университета, то теория Мультивселенной хоть и выглядит очень привлекательной с научно-популярной точки зрения, но способна сделать физиков ленивыми и заставить прекратить поиск ответов на самые базовые вопросы, например, — почему физические константы в нашей Вселенной именно такие, какие они есть, — списав все на вариативность.
«Теоретики размышляют по поводу возможности существования бесконечного числа Вселенных, и в конечном итоге мы можем прийти к четким моделям, способным объяснить, почему значения (вроде фундаментальных свойств наблюдаемых нами частиц) могут отличаться друг от друга в каждой отдельно взятой Вселенной», — говорит Войт.
Войт опасается, что однажды основным вопросом для науки в этой сфере станет рассуждение на тему «как нам повезло оказаться в этой случайной Вселенной, где все происходит так, а не по-другому, несмотря на бесконечное многообразие возможностей, поэтому давайте бросим эту затею с теориями».
Какой можно подвести итог? Многие физики получают деньги за то, что спорят и пишут книги, в которых стараются описать, как Большой взрыв и модель «предвзрывной» Вселенной способны объяснить то, что мы видим сегодня, хотя сами при этом не знают и на самом деле не могут знать, почему это так. Факт в том, что даже несмотря на серьезные упрощения как в математических моделях, так и объяснениях, мы не приблизились к верному ответу, и нам предстоит провести еще множество рассуждений на эту тему, пока не придем к нужному результату.
«Важно не только выдвигать теории и гипотезы. Куда важнее дать понять людям, что на самом деле мы пока сами не понимаем, о чем говорим. Все это пока лишь на уровне предположений, но я надеюсь, что рано или поздно мы сможем найти нужный ответ, который устроит всех», — говорит Кэрролл.
Источник
Горячий Большой взрыв и инфляция
Горячий Большой взрыв
Горячий Большой взрыв — это период развития Вселенной, на последних стадиях которого живём мы с вами. В этот период наблюдаемая часть Вселенной изначально была плотной и горячей, а затем она начала расширяться и охлаждаться. Расширение до недавнего времени замедлялось. Не запутайтесь: Горячий Большой взрыв почти наверняка начался не в самые ранние моменты жизни Вселенной.
Некоторые люди называют Горячий Большой взрыв (ГБВ) просто «Большой взрыв». Другие, говоря о Большом взрыве, подразумевают и более раннее время. Проблемы терминологии будут описаны в следующей статье про инфляцию.
Насколько горячим был ГБВ в самом горячем состоянии перед тем, как начать охлаждаться, и как он начался?
Наверняка нам это пока неизвестно. ГБВ мог начаться, когда Вселенная стала горячей по окончанию периода инфляции. В таком случае жар ГБВ произошёл от тёмной энергии, питавшей инфляцию, и максимальная температура ГБВ зависит от количества доступной тёмной энергии.
Температура могла быть:
- настолько большой, как большая доля процента планковской температуры (и тогда Вселенная была настолько горячей, что могла создавать чёрные дыры просто за счёт температуры), и
- настолько малой, как температура, соответствующая энергии Большого адронного коллайдера (и тогда её едва хватило бы для создания частиц Хиггса).
И, вероятно, не ниже этой отметки.
Иногда максимальную температуру ГБВ называют «температурой повторного нагрева», но слово «повторный» может привести к непониманию. Люди предполагали, что Вселенная была горячая как до, так и после инфляции, отсюда и «повторный нагрев» — и можно найти множество сайтов, книг, видео, изображений, демонстрирующих то же самое предположение — но оно ни на чём не основано.
Что произошло далее?
Мы вполне уверены, что нам известны основные вехи и множество деталей произошедшего за последующие 13,7 млрд лет. Вселенная постепенно расширялась (пространство становилось больше), и соответствующим образом охлаждалась и становилась более пустой. По сравнению с таким удивительным событием, как инфляция, последующий период был относительно скучным, хотя по пути встречались довольно важные вехи.
За несколько минут после начала ГБВ:
- Включилось поле Хиггса (т.е. его среднее значение стало ненулевым), что гарантировало, что многие из частиц, до этого не обладавших массой, включая кварки и электроны, встречающиеся в обычной материей, получили массу. С тех ранних пор значение поля Хиггса остаётся постоянным, по крайней мере, в наблюдаемой части Вселенной.
- Кварки, антикварки и глюоны, летавшие свободно, объединились и сформировали адроны, включая протоны и нейтроны.
- Сформировались первые ядра атомов, отличные от водорода, в результате чего во Вселенной оказалось довольно много гелия и немного дейтерия (тяжёлого водорода), а также лития. Позднее они стали ингредиентами для первых звёзд.
380 000 лет спустя всё достаточно сильно остыло для того, чтобы сформировались первые атомы, и с этого момента Вселенная стала по большей части прозрачным местом, таким, какой мы её видим сегодня. Свет, который тогда получил возможность свободно перемещаться по Вселенной, даёт нам «реликтовое излучение».
Примерно сто миллионов лет спустя начали формироваться первые галактики и зажглись первые звёзды. Точные временные рамки пока не установлены измерениями, но это пытаются сделать.
Сейчас мы живём примерно 13,7 млрд лет после начала ГБВ. Заметьте, что я не написал про «возраст Вселенной», или что она началась 13,7 млрд лет назад. Это нам точно неизвестно. Нам известно лишь, что ГБВ начался 13,7 млрд лет назад — но мы не знаем, был ли этот момент близок к началу всей Вселенной.
Инфляция
Эпоха инфляции была, вероятно, очень коротким, но наверняка красочным периодом, в котором пространство внутри участка Вселенной, включающего и нашу обозримую часть (ту, что мы можем наблюдать сегодня) стремительно расширялось с совершенно невероятной скоростью. Скорость расширения была такой большой, что это кажется безумием. И единственное, что удерживает эту идею от безумия -это то, что теория инфляции выдаёт предсказания, которые пока что согласуются с нашими измерениями космоса (включая и те, что делает проект BICEP2). Это не означает, что она верная, но это означает, что:
- есть уважительные причины считать, что она может быть верной, и
- на сегодня никто не может доказать, что она неверна.
Ещё раз: пространство расширялось. Не материя рвалась в пространство: пространство становилось гораздо больше. Это вообще не было похоже на взрыв.
Насколько безумной была скорость расширения? Участок Вселенной размером с экран вашего компьютера расширился до размеров наблюдаемой сегодня части Вселенной, или даже больше, за время меньшее, чем нужно кварку, чтобы перейти с одной стороны протона до другой. Я даже не буду пытаться заваливать вас числами, отчасти потому, что на самом деле мы не знаем, как долго длилась инфляция, но и ещё потому, что числа обозначают слишком крупные размеры и слишком мелкие промежутки времени, чтобы люди могли их себе представлять. По сути огромный кусок Вселенной был создан из крохотного кусочка почти мгновенно.
Какой была Вселенная во время этого расширения? Пустой. Чрезвычайно пустой. Гораздо, гораздо, гораздо более пустой, чем космос сегодня. Очень холодной. Очень тёмной. Всё, что могло присутствовать в ней до начала инфляции, мгновенно было разорвано и растащено на огромные расстояния. Предупреждение: есть достаточно важный и очень тонкий подвох, касающийся заявлений о пустой/тёмной/холодной Вселенной, и я пока не знаю, как точнее описать его. Было бы точнее сказать, что Вселенная была не просто «чрезвычайно» пустой, она была «максимально» пустой, тёмной и холодной — пустой от всего, кроме квантовых флуктуаций.
Что было до инфляции и как она началась, нам неизвестно. Существует несколько разумных теорий, основанных на науке, но все они будут спекуляциями, пока кто-нибудь не придумает способа проверить их при помощи измерений. Периода «до инфляции» может вообще не существовать — либо потому, что инфляция постоянно идёт где-то во Вселенной, или потому что время не будет иметь смысла, если вернуться достаточно далеко в прошлое, или по какой-то другой причине. Но во многих контекстах это почти не имеет значения, как я буду объяснять при помощи изображений, по пути отвечая на некоторые из часто задаваемых вопросов.
Что послужило причиной безумной скорости инфляции?
Причиной было большое количество того, что часто называют:
- «тёмной энергией» (но это не энергия, это определённая комбинация энергии и отрицательного давления), или
- «космологическая константа» ([не] ошибка Эйнштейна; к счастью, это не константа, или Вселенная испытывала бы инфляцию вечно), или
- «тёмное гладкое растяжение» (что верно, но звучит неуклюже и ничего не объясняет).
В общем во Вселенной сейчас есть немного этой субстанции, из-за чего скорость расширения Вселенной за последние несколько миллиардов лет начала увеличиваться. Но, мы подозреваем, что в какой-то момент по какой-то причине её было гораздо больше. Из-за чего район, содержащий нашу часть Вселенной, расширялся с невероятной скоростью, то есть, подвергался «инфляции». На рисунках 1, 2 и 3 содержатся необоснованные и наверняка неверные догадки по поводу того, почему началась инфляция, а на рис. 4 детали этих догадок уже не имеют никакого значения.
Рис. 1: совершенно необоснованная догадка по поводу того, как мог выглядеть один участок Вселенной перед началом инфляции. В сером участке по какой-то неизвестной причине содержится огромное количество тёмной энергии. Внутри серого участка я нарисовал несколько объектов, обозначенных зелёными и красными точками. Что находится вне серого региона, я понятия не имею, но в итоге это и не будет иметь значения.
Откуда взялось это огромное количество тёмной энергии?
Мы не знаем. Есть несколько предположений, некоторые из которых были отвергнуты полученными недавно данными. Мы надеемся узнать больше по этой теме в следующем десятилетии.
Рис. 2: тёмная энергия заставляет серый участок расширяться. Объекты в сером участке (зелёные и красные точки) разносятся в стороны с расширением пространства, содержащего тёмную энергию, которое становится всё более объёмным, при этом не двигаясь за пределы серого участка.
Почему скорость расширения не замедляется, если расширение разрежает тёмную энергию?
Странно и удивительно, что по мере инфляции Вселенной и роста её объёма количество тёмной энергии в пересчёте на единицу объёма остаётся постоянным. Это означает, что инфляция будет идти, и идти, и идти, не замедляясь, пока что-то не заставит тёмную энергию исчезнуть.
Рис. 3: поскольку тёмная энергия, в отличие от обычных материалов, не становится более разреженной по мере расширения пространства, и её плотность остаётся постоянной, серый участок продолжает расширяться. К этому времени все зелёные и красные точки, кроме одной, скрылись из виду. Какой бы ни была температура расширяющегося участка вначале, он становится очень холодным (максимально холодным, насколько это допускают условия).
Зелёные и красные точки удаляются друг от друга с огромной скоростью.
Не означает ли это невероятное расширение, что все вещи отдалялись друг от друга со скоростью, превышающей скорость света, универсальный предел скорости?
Не нарушает ли это теорию относительности Эйнштейна?
Нет, не нарушает. Теория Эйнштейна говорит о том, что если два объекта проходят мимо друг друга в одной точке пространства, то для наблюдателя, движущегося вместе с одним из них, измеряемая скорость другого объекта никогда не будет превышать скорость света. Но два объекта в двух разных местах могут удаляться друг от друга быстрее скорости света, если расширяется само пространство. Именно это и происходит в расширяющейся Вселенной.
Рис. 4: суть эпохи инфляции. К этому моменту инфляция разнесла все объекты, существовавшие в сером участке на рис. 1 (красные и зелёные точки) на чрезвычайно большие расстояния друг от друга. Серый участок расширился до непостижимо огромного размера, стал ужасно пустым и холодным. А расширение может продолжаться и продолжаться в несколько этапов. Первоначальные догадки, показанные на рис. 1 и рис. 2, уже совершенно не связаны со свойствами этого участка Вселенной; если бы мы начали сильно отличной догадки на рис. 1 и 2, мы всё равно бы получили тот же самый рис. 4.
Я думал, что Большой взрыв был связан с очень горячей Вселенной. А теперь вы говорите, что она была очень холодной?
Да, так и есть. Ну, почти так. Она настолько холодная, насколько это возможно; однако наличие квантовых флуктуаций привносит свои особенности. Вселенная стала горячей после инфляции (об этом чуть дальше). Была ли она горячей в какой-то момент до инфляции, вопрос чисто умозрительный; никаких свидетельств «за» или «против» всё равно нет. Но во время инфляции температура упала до небольшой доли градуса выше абсолютного нуля.
Рис. 5: расширение испытывающего инфляцию участка замедляется. То, что со времнем станет наблюдаемой частью нашей Вселенной, уже достаточно крупное, чтобы его нарисовать — оно обозначено красным пунктиром.
Почему инфляция остановилась?
Мы не знаем. Есть, конечно, несколько научных предположений, с уравнениями, предсказаниями и способами их проверки — по крайней мере, частичной. Возможно, скоро мы узнаем об этом больше благодаря продолжающемуся изучению космоса.
Что случилось, когда инфляция остановилась?
Наилучшая из догадок (и наши уравнения говорят о том, что это возможно, но не сообщают деталей) — вся тёмная энергия превратилась в частицы, включая и те, из которых мы состоим, и во множество других типов известных нам частиц, и, возможно, в кучу частиц, о которых нам ничего не известно. И когда это произошло, Вселенная стала очень горячей и плотной — и продолжает расширяться, хотя и гораздо медленнее.
Рис. 6: по окончанию инфляции тёмная энергия, заполнявшая ранее расширявшийся участок, превращается в энергию движения и энергию массы частиц, появляющихся в огромных количествах, что делает Вселенную очень горячей. Чем больше тёмной энергии в единице объёма было во время инфляции, тем горячее Вселенная может стать после того, как разогреется. Крупный участок, распространяющийся гораздо дальше, чем показано, включающий то, что станет нашей наблюдаемой частью Вселенной, заполняется почти однородным горячим плотным супом из частиц. С этого момента Вселенная расширяется дальше, но гораздо медленнее, чем во время инфляции, и постепенно остывает.
Вот такой источник был у Горячего Большого Взрыва. Некоторые люди (включая меня) просто говорят: Этот момент является началом Большого взрыва. Другие говорят, что Большой взрыв включает в себя Горячий Большой Взрыв и инфляцию, хотя это странно — инфляция больше похожа на свист, а не на взрыв. Некоторые говорят, что инфляция привела к взрыву в «Большом взрыве», сначала сделав Вселенную большой и расширяющейся, а потом сделав её горячей. Ещё кто-то говорит, что в Большой взрыв входят Горячий Большой Взрыв, инфляция, и всё, что было до неё. Но это рискованное заявление — до инфляции могло быть что-то, что никак не заслуживает термина «взрыв» (энергетическое, насыщенное и внезапное событие).
Поскольку терминология пока не устоялась, вы можете сами решать, что именно называть термином «Большой взрыв». Важно лишь знать, что у вас есть несколько возможностей, и что разные учёные и разные сайты могут иметь в виду разные понятия, обозначаемые как «Большой взрыв».
Источник