Меню

Испускает ли солнце радиоволны

Радиоизлучение Солнца

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Радиоизлучение Солнца» в других словарях:

РАДИОИЗЛУЧЕНИЕ СОЛНЦА — электромагнитное излучение Солнца в диапазоне от миллиметровых до метровых волн, возникающее в области от нижней хромосферы до солнечной короны. Различают тепловое радиоизлучение спокойного Солнца; излучение активных областей в атмосфере над… … Большой Энциклопедический словарь

радиоизлучение Солнца — электромагнитное излучение Солнца в диапазоне от миллиметровых до метровых волн, возникающее в области от нижней хромосферы до солнечной короны. Различают тепловое радиоизлучение «спокойного» Солнца; излучение активных областей в атмосфере над… … Энциклопедический словарь

РАДИОИЗЛУЧЕНИЕ СОЛНЦА — эл. магп. излучение Солнца в диапазоне от миллиметровых до метровых волн, возникающее в области от ниж. хромосферы до солнечной короны. Различают тепловое радиоизлучение спокойного Солнца; излучение активных областей в атмосфере над солнечными… … Естествознание. Энциклопедический словарь

Служба Солнца — систематические наблюдения Солнца (См. Солнце) на многих астрономических обсерваториях мира с целью сбора наблюдательного материала, относящегося ко всем проявлениям солнечной активности (См. Солнечная активность). В программу С. С.… … Большая советская энциклопедия

Космическое радиоизлучение — излучение галактических и метагалактических объектов в радиодиапазоне длин волн. Иногда к К. р. относят также радиоизлучение Солнца и планет. К. р. открыто в 1931 американским радиофизиком К. Янским на волне около 15 м. Несмотря на весьма … Большая советская энциклопедия

АРХЕОАСТРОНОМИЯ — Археологи нашли многочисленные свидетельства того, что в доисторические времена люди проявляли большой интерес к небу. Наиболее впечатляют мегалитические сооружения, построенные в Европе и на других континентах несколько тысяч лет назад.… … Энциклопедия Кольера

Радиоастрономия — раздел астрономии, в котором небесные объекты Солнце, звёзды, галактики и др. исследуются на основе наблюдений излучаемых ими радиоволн в диапазоне от долей мм до несколкьих км. Иногда к Р. относят также и радиолокационную астрономию (См … Большая советская энциклопедия

РАДИОАСТРОНОМИЯ — раздел астрономии, изучающий космические объекты путем анализа приходящего от них радиоизлучения. Многие космические тела излучают радиоволны, достигающие Земли: это, в частности, внешние слои Солнца и атмосфер планет, облака межзвездного газа.… … Энциклопедия Кольера

Солнечная радиация — излучение Солнца электромагнитной и корпускулярной природы. С. р. основной источник энергии для большинства процессов, происходящих на Земле. Корпускулярная С. р. состоит в основном из протонов, обладающих около Земли скоростями 300 1500… … Большая советская энциклопедия

Солнце — центральное тело Солнечной системы (См. Солнечная система), представляет собой раскалённый плазменный шар; С. ближайшая к Земле Звезда. Масса С. 1,990 1030 кг (в 332 958 раз больше массы Земли). В С. сосредоточено 99,866% массы Солнечной… … Большая советская энциклопедия

Источник

Испускает ли солнце радиоволны

1-2 млн. К. Поскольку волны разной длины приходят от разных слоев солнечной атмосферы, это позволяет исследовать св-ва хромосферы и короны по их радиоизлучению. В радиодиапазоне размер солнечного диска зависит от длины волны, на к-рой ведется наблюдение: наметровых волнах радиус Солнца больше, чем на сантиметровых, и в обоих случаях он больше радиуса видимого диска.

Зависимость интенсивности основных компонентов
радиоизлучения Солнца (их яркостной температуры)
от частоты (длины волны).

Р.С. включает тепловую и нетепловую составляющие. Тепловое радиоизлучение, обусловленное столкновениями электронов и ионов, движущихся с тепловыми скоростями, определяет нижнюю границу интенсивности радиоизлучения «спокойного» Солнца. Интенсивность радиоизлучения приятно характеризовать величиной яркостной температуры Tb. В случае излучения «спокойного» Солнца на сантиметровых волнах Tb

10 6 К (рис.). Естественно, что для теплового излучения величина Tb совпадает с кинетич. темп-рой слоя, откуда излучение выходит, если этот слой непрозрачен для данного излучения.

Представление об уровне радиоизлучения «спокойного» Солнца явл. идеализацией, в действительности же Солнце никогда не бывает совершенно спокойным: бурные процессы в солнечной атмосфере приводят к появлению локальных областей, радиоизлучение к-рых намного увеличивает наблюдаемую величину интенсивности по сравнению с уровнем «спокойного» Солнца. Образование на поверхности Солнца центров активности (факелов и пятен) сопровождает появлением над ними корональных конденсаций — плотных и горячих, как бы накрывающих активную область. Непосредственно над пятнами горячая корона как бы опускается до высот тыс. км, где напряженность магн. поля тыс. Э. Тогда электроны помимо излучения при соударениях с протонами ( тормозное излучение ) должны излучать и при движении вокруг магн. силовых линий ( магнитотормозное излучение ). Такое излучение обусловливает возникновение над активными областями ярких «радиопятен», к-рые появляются и исчезают примерно в то же время, что и видимые пятна. Поскольку пятна изменяются медленно (дни и недели), то столь же медленно меняется радиоизлучение корональных конденсаций. Пожтому его наз. медленно меняющимся компонентом. Этот компонент проявляется в основном в диапазоне волн от 2 до 50 см. В основном он тоже является тепловым, поскольку излучающие электроны имеют тепловое распределение скоростей ( Максвелла распределение ). Однако на определенной стадии развития активной области в пространстве между пятнами наблюдаеются источники, имеющие, по-видимому, нетепловую природу.

Читайте также:  Солнце начало садиться какая часть речи начало

Иногда в области конденсаций наблюдаются внезапные усиления радиоизлучения на тех же волнах — сантиметровые всплески. Их длительность меняется от неск. мин до десятков мин или даже часов. Такие радиовсплески связаны с быстрым нагревом плазмы и ускорением частиц в области солнечной вспышки. Увеличение темп-ры и плотности газа в конденсации может быть причиной генерации сантиметровых всплесков с Tb

10 7 -10 8 К. Более интенсивные всплески на сантиметровых волнах обусловлены, по-видимому, циклотронным или плазменным излучением субрелятивистских электронов с энергией от десятков до сотен кэВ во вспышечных магн. арках.

Еще выше над корональными конденсациями также наблюдается усиленное радиоизлучение, но уже на метровых волнах ( м) — т.н. шумовые бури; они могут наблюдаться в течение чаосв и даже дней. Здесь много всплесков длительностью ок. 1 с (радиовсплески I типа) в узких интервалах частот. Это радиоизлучение связано с плазменной турбулентностью , к-рая возбуждается в короне над развивающимися активными областями, содержащими крупные пятна.

Выбросы быстрых электронов и др. заряженных частиц из области хромосферной вспышки вызывают ряд эффектов в радиизлучении активного Солнца. Самые обычные из них — радиовсплески III типа. Их характерной особенностью явл. то, что частота радиоизлучения меняется со временем, причем в каждый момент времени оно появляется сразу на двух частотах (гармониках), относящихся как 2:1. Всплеск начинается на частоте ок. 500 МГц ( см), а затем частота его обеих гармоник быстро уменьшается, примерно на 20 МГц в 1 с. Весь всплеск длится ок. 10 с. Радиовсплески III типа создаются потоком частиц, выброшенным вспышкой и движущимся через корону со скоростью \approx 0,3 с. Поток возбуждает колебания плазмы (плазменные волны) на частоте, к-рая определяется электронной плотностью в том месте короны, где поток в данный момент находится. А поскольку электронная плотность уменьшается при удалении от поверхности Солнца, то движение потока сопровождаетсяпостепенным уменьшением частоты плазменных волн. Часть энергии этих волн может превращаться в эл.-магн. волны с той же или удвоенной частотой, к-рые и регистрируются на Земле в виде радиовсплесков III типа с двумя гармониками. Как показали наблюдения на КА, потоки электронов, распространяясь в межпланетном пространстве, генерируют радиовсплески III типа вплоть до частот 30 кГц.

Вслед за радиовсплесками III типа в 10% случаев наблюдается радиоизлучение в широком интервале частот с максимумом интенсивности на частоте

100 МГц ( м). Это излучение наз. радиовсплесками V типа, всплески длятся ок. 1-3 мин. По-видимому, они также обусловлены генерацией плазменных волн.

При очень сильных вспышках на Солнце возникают радиовсплески II типа тоже с меняющейся частотой. Их длительность примерно 5-30 мин, а диапазон частот 200-30 МГц. Порождается всплеск ударной волной , движущейся со скоростью v

10 8 см/с. Ударная волна возникает в результате расширения газа при сильной вспышке. На фронте этой волны образуются плазменные волны. Затем они, также как и в случае радиовсплесков III типа, частично переходят в эл.-магн. волны. Сходство радиовсплесков II и III типов подчеркивается и тем, что для всплесков II типа тоже характерно излучение на двух гармониках. При распространении в межпланетном пространстве вспышечная ударная волна продолжает генерировать радиовсплеск II типа на волнах гектометрового и километрового диапазонов.

Читайте также:  Повелитель солнца дорама содержание

Когда сильная ударная волна достигает верхней части короны, появляется непрерывное радиоизлучение в широком диапазоне частот — радиоизлучение IV типа. Оно похоже на радиовсплески V типа, но отличается от последних большей длительностью (иногда до неск. ч). Радиоизлучение IV типа генерируется субрелятивистскими электронами в плотных облаках плазмы с собственным магн. полем, к-рые выносятся в верхние слои короны. Обычно источники радиоизлучения IV типа поднимаются в короне со скоростью

неск. сотен км/с и прослеживаются до высот солнечных радиусов над фотосферой. Вспышки, с к-рыми связаны интенсивные сантиметровые всплески и радиоизлучение II и IV типов на метровых волнах, часто сопровождаются геофизич. эффектами — повышением интенсивности потоков протонов в околоземном космич. пространстве, прекращением радиосвязи на коротких волнах через полярные области, геомагнитными бурями и т.д. Радиоизлучение в широком диапазоне частот может быть использовано для краткосрочного прогнозирования этих эффектов.

Практически все указанные типы всплесков имеют разнообразную тонкую структуру. Перечисленными типами всплесков не ограничивается радиоизлучение Солнца, однако описанные выше компоненты явл. основными.

Лит.:
Каплан С.А., Элементарная радиоастрономия, М., 1966; Железняков В.В., Радиоизлучение Солнца и планет, М., 1964; Каплан С.А., Пикельнер С.Б., Цытович В.Н., Физика плазмы солнечной атмосферы, М., 1977; Солнечная и солнечно-земная физика. Иллюстрированный словарь терминов, пер. с англ., М., 1980.

Источник

Электромагнитное излучение в космосе.

Наибольшая часть наших сведений о Вселенной получена благодаря исследованию света звезд. Свет, излучаемый звездой, распространяется в космосе в форме волны. Волна — это поднимающееся и опадающее периодическое колебание, которое переносит энергию от источника к приемнику без переноса вещества.

Световая волна — электромагнитное колебание. Световые волны переносят энергию от звезд (источник) к сетчатке нашего глаза (приемник). Расстояние от какой-либо точки на волне до следующей такой же самой точки, например, от гребня до гребня, называется длиной волны.

Человеческий глаз ощущает свет с очень короткой длиной волны. Волны, благодаря которым мы видим, называются видимым светом. Длины волн видимого света обычно измеряют в ангстремах. Один ангстрем равен одной стомиллионной доле сантиметра (10-8 см). Видимый свет имеет длины волн между 4000 А и 7000 А.

Различные длины волн видимого света воспринимаются как разные цвета. Расположение цветов по длинам волн называется спектром.

Видимый свет — это лишь небольшая доля всего электромагнитного излучения в космосе. Энергия переносится также в форме гамма-лучей, рентгеновских лучей, ультрафиолетового излучения, инфракрасного излучения и радиоволн.

Нам известно, что гамма-лучи используют в медицине для лечения опухолевых заболеваний, а рентгеновские — для диагностики. Ультрафиолетовые лучи вызывают на теле загар, а инфракрасные — согревают. Радиоволны используются для связи.

Все эти формы излучения представляют собой тот же вид энергии, что и видимый свет. Отличаются они только длиной волны. Эта же причина приводит к резко различным свойствам излучения. Самые короткие волны (гамма-лучи) имеют наибольшую энергию, в то время как самые длинные (радиоволны) — наименьшую энергию.

Все семейство электромагнитного излучения, составленное согласно длинам волн, называется электромагнитным спектром.

Все виды электромагнитных волн распространяются в пустом пространстве с одной и той же скоростью, а именно со скоростью света. Скорость света в вакууме составляет примерно 299 793 км/с. Для расчетов берется значение 300 000 км/с. Ни один из известных объектов во Вселенной не может двигаться быстрее света. Во всех других средах (например, в воздухе, в стекле) скорость света меньше.

Читайте также:  Используют энергию солнца продуценты или редуценты

Световой год — это расстояние, которое проходит свет в пустоте за один год.

Задача. Сколько километров содержится в одном световом году?

1 св. год = скорость света x 1 год. Так как в 1 году содержится 3,156∙107 секунд, то 1 св. год = 299 793 км/с ∙ 3,156∙107 с = 9,46 триллионов км.

Волновое движение может быть описано либо с помощью понятия длины волны, либо с помощью понятия частоты. Частота волны — это число волн, которые прошли за данное время через данную точку пространства. Например, за 1 секунду. Количество колебаний в секунду измеряется в герцах (Гц).

Человеческий глаз воспринимает световые волны различных цветов, обладающие очень высокой частотой.

Для всех видов волнового движения справедливо соотношение:

V=v*λ, где V — скорость волны, ν — частота волны, λ — длина волны. Для электромагнитных волн в пустоте скорость V равна скорости света с.

Звезды, как и другие горячие тела, излучают энергию во всех длинах волн (закон излучения Планка). Чем горячее звезда, тем больше энергии она излучает. Температура звезды также определяет, какая длина волны соответствует самому интенсивному излучению.

Чем звезда горячее, тем на более короткие длины волн приходится максимум света. Это есть закон смещения излучения Вина. По цвету звезды можно узнать ее температуру. Горячие звезды выглядят бело-голубыми (короткие длины волн), а холодные — красными (длинные волны). Самые горячие (очень короткие длины волн) и самые холодные (очень длинные волны) практически невидимы.

Для астрономов важны электромагнитные волны всех длин, потому что каждая волна несет особенную ценную информацию о наблюдаемом объекте. Земная атмосфера поглощает большую часть излучения из космоса, и до телескопов, находящихся на земной поверхности, доходят лишь волны некоторых диапазонов.

Астрономы видят Вселенную с Земли через три «окна прозрачности»:

оптический (видимый), радио, инфракрасный. Современная техника дает возможность поднять инструменты над земной атмосферой, то есть, проводить наблюдения из космоса. Современная астрономия стала всеволновой — ей доступны все длины волн. Оказалось, что в различных диапазонах электромагнитного излучения небо «выглядит» совершенно по-разному. Объекты, яркие в одних лучах, могут быть невидимы в других, и наоборот. Например, на «радионебе» ярче всего «светит» центр нашей Галактики и отдельный источник в созвездии Кассиопеи — остаток взрыва Сверновой. В рентгеновских и гамма-лучах наблюдается множество источников, которые вообще не видны в других диапазонах, и о которых ранее даже не догадывались.

Электромагнитные волны разной длины воспринимаются разными приемниками излучения.

Приемником видимого света является человеческий глаз. Все оптические телескопы в итоге направляют световое излучение от звезд в глаз наблюдателя. На выходе телескопа можно также установить камеру с фотопленкой.

Существуют две основные конструкции оптических телескопов — рефракторы (преломляющие лучи линзовые системы) и рефлекторы (отражающие свет зеркальные устройства).

Увеличение телескопа определяется следующим образом:

увеличение = фокусное расстояние объектива / фокусное расстояние окуляра

Приемником радиоволн является антенна радиотелескопа. Чем больше размеры антенны, тем более слабый источник может «видеть» радиотелескоп. Основные достоинства радиотелескопов: 1) «видят» источники, скрывающиеся за облаками межзвездной пыли; 2) могут работать и днем и в облачную погоду; 3) изучают объекты, восприятие которых находится за пределами наших органов чувств.

Приемниками инфракрасного излучения являются специальные приборы — термопары и болометры. Они охлаждаются до температуры космического пространства и надежно защищаются от окружающей наземной среды. Существуют также и специальные фотопленки, чувствительные к тепловому инфракрасному излучению.

Астрофизика высоких энергий изучает объекты являющиеся источниками ультрафиолетового, рентгеновского и гамма-излучения. Приемниками этих видов волн являются особые составы — люминофоры, светящиеся под воздействием лучей и сложные устройства (пузырьковая камера, счетчик Гейгера), устанавливаемые на космических аппаратах-обсерваториях.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник

Adblock
detector