Меню

Исследование дальнего космоса кратко

Школьная Энциклопедия

Nav view search

Навигация

Искать

Радиолокационное исследование космоса

Подробности Категория: Радио Опубликовано 11.10.2015 19:33 Просмотров: 5004

Что представляет собой планета Венера, закрытая от наблюдателей на Земле плотной атмосферой? Как выглядит поверхность Марса и каков состав марсианской атмосферы? На эти вопросы не могли дать ответ телескопы. Но всё изменилось с появлением радиолокации.

Оказалось, что радиоволны, посылаемые радиолокаторами с Земли, отражаются от космических тел так же, как и от земных объектов. Направляя радиосигналы на определённое астрономическое тело, и анализируя отражённые от него сигналы, можно получить информацию о космическом объекте.

Так появилась радиолокационная радиоастрономия, исследующая планеты и их спутники, кометы, астероиды и даже солнечную корону с помощью радиосигналов.

Ближний и дальний космос

Часто выделяют ближний и дальний космос. Граница между ними весьма условна.

Ближним называют космос, исследуемый космическими летательными аппаратами и межпланетными станциями, а дальним считают космос за пределами Солнечной системы. Хотя чёткая граница между ними не установлена.

Считается, что ближний космос находится над атмосферным слоем Земли, вращающимся вместе с ней и называемым околоземным пространством. В ближнем космосе уже нет атмосферы, но на все объекты, находящиеся в нём, всё ещё действует гравитационное поле нашей планеты. И чем дальше от Земли, тем меньшим становится это влияние.

Объекты дальнего космоса – звёзды, галактики, туманности, чёрные дыры, располагающиеся за пределами Солнечной системы.

Ближний космос населяют планеты Солнечной системы, спутники, астероиды, кометы, Солнце. По космическим понятиям расстояние между ними и Землёй считается небольшим. Поэтому их возможно исследовать с помощью радиолокаторов, расположенных на Земле. Это специальные мощные РЛС, называемые планетными радиолокаторами.

Радиолокационное исследование ближнего космоса

Центр дальней космической связи в Евпатории

Космические радиолокаторы работают по такому же физическому принципу, что и обычные наземные радиолокаторы, обслуживающие морские суда и самолёты. Радиопередающее устройство планетного радиолокатора генерирует радиоволны, которые направляют на исследуемый космический объект. Отражённые от него эхо-сигналы улавливаются приёмным устройством.

Но из-за огромного расстояния отражённый от космического объекта радиосигнал становится значительно слабее. Поэтому передатчики на планетных радиолокаторах имеют очень большую мощность, антенны — большие размеры, а приёмники — очень высокую чувствительность. Так, например, диаметр зеркала радиоантенны в Центре дальней космической связи под Евпаторией равен 70 м.

Первой планетой, которую исследовали с помощью радиолокации, стала Луна. Кстати, идея послать радиосигнал на Луну, а затем принять его отражение, возникла ещё в 1928 г. и была выдвинута русскими учёными Леони́дом Исаа́ковичем Мандельшта́мом и Никола́ем Дми́триевичем Папале́кси. Но технически реализовать её в то время было невозможно.

Леонид Исаакович Мандельштам

Николай Дмитриевич Папалекси

Это удалось сделать в 1946 г. американским и венгерским учёным независимо друг от друга. Радиосигнал, посланный с мощного радиолокатора в сторону Луны, отразился от её поверхности и вернулся на Землю через 2,5 секунды. Этот эксперимент позволил вычислить точное расстояние до Луны. Но вместе с этим по картинке отражённых волн удалось определить и рельеф её поверхности.

В 1959 г. были получены первые сигналы, отражённые от солнечной короны. В 1961 г. сигнал радиолокатора отправился в сторону Венеры. Радиоволны, обладающие высокой проницательностью, проникли сквозь её плотную атмосферу и позволили «увидеть» её поверхность.

Затем было начато исследование Меркурия, Марса, Юпитера и Сатурна. Радиолокация помогла определить размеры планет, параметры их орбит, диаметры и скорость их вращения вокруг Солнца, а также исследовать их поверхности. С помощью РЛС были установлены точные размеры Солнечной системы.

Радиосигналы отражаются не только от поверхностей небесных тел, но и от ионизированных следов метеорных частиц в атмосфере Земли. Чаще всего эти следы появляются на высоте около 100 км. И хотя существуют они от 1 до нескольких секунд, этого достаточно, чтобы с помощью отражённых импульсов определить размер самих частиц, их скорость и направление.

Бортовые радиолокаторы на управляемых космических объектах

Малый космический аппарат (МКА) «Кондор-Э» с радиолокатором

Когда на космические орбиты вывели искусственные спутники Земли, а затем космические станции и других управляемые космические объекты, на них начали устанавливать бортовые радиолокаторы. Они имели гораздо меньшие размеры, чем наземные планетные радиолокаторы, но могли приближаться к объекту наблюдения и выполнять важные исследовательские задачи.

Радиолокаторы были установлены на российских космических аппаратах «Венера-15» и «Венера-16». В 1984 г. на Землю были переданы данные, полученные с их помощью. Это помогло составить точные карты поверхности Венеры.

В 2012 г. с помощью бортового радара были открыты залежи водяного льда в кратере Шеклтон на Луне.

Радар MARSIS, установленный на космическом аппарате, выведенном на орбиту Марса в декабре 2003 г. Европейским космическим агентством, мог зондировать поверхность планеты на глубине 5 км. Это позволило ученым собрать информацию о верхних слоях марсианской атмосферы, или ионосферы, исследовать структуру поверхности планеты, а также её внутреннее строение.

Читайте также:  Рен тв космос вселенная

Исследование дальнего космоса

Космические расстояния огромны по сравнению с земными. И радиосигнал, распространяющийся со скоростью света, отразившись от космического объекта, вернётся через какой-то интервал времени. Например, сигнал, посланный к Луне, возвращается на Землю через 2,5 секунды, с Венеры через 4,5 минуты, а с Юпитера он путешествует больше часа.

Можно ли исследовать с помощью радиолокаторов объекты дальнего космоса, расположенные на расстояниях, которые свет преодолевает десятки, сотни, а то и тысячи световых лет? Возможно, когда-нибудь в будущем наука сможет решить эту задачу. Будут созданы сверхмощные радиопередатчики и сверхчувствительные приёмники. Пока же расстояния, на которых космические радиолокаторы способны обнаружить отражённый радиосигнал, ограничены.

Источник

Интересные факты об астрономии дальнего космоса

Для многих людей все, что связано с космосом, воспринимается, как нечто далекое и сложное. Если разобраться, то космос делится на ближний и дальний, особенно интересна астрономия дальнего космоса. Вселенная кажется бесконечной, но на самом деле это не так, у нее есть границы. То же самое касается земной атмосферы, на определенной высоте она начинает становиться менее плотной и заканчивается. После изучения этого материала ты узнаешь больше о ближнем и дальнем космосе, убедишься, что это вовсе не сложно для понимания обычного человека. Здесь приведены интересные факты, добытые при освоении космического пространства.

Начать стоит с того, что ближе. В каком месте заканчивается земная атмосфера и начинается космос.

С чего начинается космос?

Четких границ у космоса не существует, так как ученые не смогли договориться в вопросе, где они должны проходить. Однако, никто не оспаривает, что космос начинается в определенном месте. Споры длятся еще с тех времен, когда был запущен первый космический спутник. Большинство специалистов считают, что граница должна быть проведена по так называемой линии Кармана. Она проходит на высоте 80-100 км от поверхности планеты. Именно на такой высоте космические аппараты переключаются на первую космическую скорость, чтобы создать достаточную аэродинамическую силу.

Астрономы из Канады и Америки ведут другой отсчет, для них космос начинается строго с высоты в 118 километров. Они аргументируют свою точку зрения тем, что здесь становится ощутимым воздействием космических частиц, а ветра из земной атмосферы напротив становятся неощутимыми.

НАСА проводит границу на другом уровне, для них это отметка 122 километра. Объясняют решение тем, что на такой высоте корабли перестают маневрировать на ракетных двигателях, переключаясь на аэродинамику. Они будто бы опираются на атмосферу. Узнать о других мнениях ты можешь из статьи “Где начинается космос?”.

Ближний космос

Все, что мы называем космосом, делится на три зоны:

  • околоземное пространство;
  • ближний космос;
  • дальний космос.

Газовое пространство вокруг нашей планеты — это атмосферный слой, он вращается вместе с ней вокруг ее оси. Это наиболее изученная зона, она используется для пассажирских и грузовых перевозок. Область над конкретным государством находится в ведении этого государства, в ней нельзя перемещаться без предварительного согласования.

Ближний космос находится выше. Согласно решению ООН, он начинается на высоте около 100 километров над уровнем моря, там заканчивается околоземное пространство. В нем практически отсутствует атмосфера, однако влияние Земли все-таки ощущается. В первую очередь это сила притяжения.

Ближний космос не имеет принадлежности к какому-либо государству, в нем могут перемещаться все космические аппараты. Если такой аппарат разгонится до скорости 7,9 км/с, он станет искусственным спутником нашей планеты. Если скорость станет ниже, он сойдет с орбиты. Выполнившие свою функцию космические аппараты обычно сгорают в атмосфере, те, которые не сгорели, падают на Землю, чаще всего в океан. Но некоторые элементы остаются на орбите, к примеру, отпавшие ступени ракет. Так человечество смогло засорить не только Землю, но и ближний космос.

Ракеты, которые отправляются с космонавтами или ценной аппаратурой для исследований, должны не только достигнуть цели, но и успешно вернуться обратно. Их оборудуют защитой от сгорания и специальными системами спасения. Благодаря этому космонавты могут возвращаться в целости и сохранности.

Ближний космос тоже достаточно хорошо изучен, намного лучше, чем дальний. Благодаря его активному исследованию мы узнали много нового о естественном спутнике Земли. Интересные факты о нем представлены в статье “Что такое темная сторона Луны?”.

Дальний космос

С ним связаны романтические представления, у людей возникают ассоциации с фантастическими фильмами и опасными исследованиями. Дальним космосом называют то, что находится за пределами Солнечной Системы. В некоторых интерпретациях его можно отнести к межзвездному пространству, окружающему звезду и ее планетную систему.

Межпланетное пространство продолжается до гелиопаузы, далее его сменяет межзвездное. Гелиопаузой называют важнейшую составляющую гелиосферы. Она защищает все планеты нашей системы от радиации. Таким образом, дальнее космическое пространство — это сочетание межзвездного и межпланетного пространства всех планет Солнечной системы кроме Земли.

Читайте также:  Космос который всегда со мной

Дальнее космическое пространство нельзя считать вакуумом, в котором ничего нет. Хотя именно так нам его показывают многие фильмы и картины. Его наполнением является межзвездная среда, она состоит из рассредоточенных газов и пыли. Также в ней присутствуют магнитные поля, некоторые излучения, пылинки и ионы, отдельные молекулы. Плотность данной материи может меняться в зависимости от зоны. Ближе к центру планетной системы плотность повышается, в среднем она составляет миллион частиц на метр кубический. Газовая составляющая состоит примерно из 89% водорода, 9% гелия и 2% смеси тяжелых соединений, в том числе и металлов.

На протяжении долгих веков астрономы стремились к точному определению природы межзвездного пространства, как минимум с 17 века. Однако, человечество и сейчас не располагает достаточно мощными инструментами и технологиями для его подробного изучения. Это важная область для астрофизики, без нее наука не смогла бы определить, как наша планетная система расходует газы. Данные знания необходимы, чтобы представить длительность образования новых звезд.

Помимо межзвездного пространства в зону дальнего космоса входит межгалактическое. Последнее относится к пространству между галактиками, оно практически пустое, но даже его нельзя считать абсолютной пустотой. Плотность тоже меняется в зависимости от локализации, чем ближе к звездной системе — тем плотнее, так как здесь проходят солнечные ветра и потоки космического мусора, поступающего из планетной системы. Астрофизики высказывают предположения о том, что газ в данной среде ионизирован, таким его делают высокие температуры.

Астрономия дальнего космоса плохо изучена и поэтому привлекает людей своей загадочностью. Если тебе интересны теории относительно него, то обрати внимание на статью “Могут ли инопланетяне поймать радиосигнал с Земли?”.

Источник

Разведка дальнего космоса: редкие и ценные миссии

В 1977 году НАСА запустило два аппарата, предназначенных для исследования Сатурна и Юпитера. Зонды Вояджер-1 и -2 пролетели сквозь Солнечную систему, выполнили главную часть своих миссий и получил новую — Voyager Interstellar Mission (VIM), буквально Межзвездная миссия Voyager.


Космический аппарат Вояджер-2 удаляется от Солнца со скоростью 15,4 км/с. Вояджер-2 весит 722 кг и имеет габариты 3,7×2,2×13 м. Радиосигнал Вояджера-2 летит к Земле 14 часов (фигурка человека рядом с зондом позволяет оценить его размер)

В настоящее время Voyager -1 находится на расстоянии 18,5 млрд км или 123,7 астрономические единицы. Voyager -2, соответственно 15,1 млрд. км или 101 а.е. Ежегодно аппараты удаляются от Солнечной системы на 3,6 и 3,3 а.е., причем Вояджер-1 летит вовне из нашей системы на север под углом 35 градусов к плоскости эклиптики, а Вояджер-2 на — юг под углом 48 градусов.В марте 2013 года в Geophysical Research Letters появилась статья Билла Веббера из университета штата Нью-Мексико, который утверждает, что Voyager -1 уже покинул солнечную систему и движется в межзвездной среде. Однако в НАСА это сообщение опровергли.

У обоих аппаратов есть топливо и энергия для работы вплоть до 2020-2025 года. За это время Вояджер-1 удалится от Солнца на расстояние около 19 млрд. км, а Вояджер-2 16,9 млрд км. Через 7-12 лет связь с аппаратами почти наверняка прекратится, и они превратятся в мертвые груды металла. Скорее всего, до этого момента ученые смогут засечь момент перехода границы Солнечной системы с помощью датчиков частиц и магнитного поля «Вояджеров». Это даст знания о параметрах межзвездной среды, которые невозможно получить никаким другим образом.

Но даже после этого миссия VIM продолжится. На борту аппаратов находятся золотые пластинки с информацией о нашей цивилизации, так что зонды станут своеобразными «посылками», которые человечество отправило к звездам. Правда, лететь к другим звездам вояджеры будут долго. Только через 40 тыс. лет Вояджер-1 пройдет на расстоянии 1,6 световых года от звезды AC+79 3888 в созвездии Жирафа. Вояджер-2 через 29,6 тыс. лет пройдет на расстоянии 4,3 световых года от Сириуса, самой яркой звезды в нашем небе. Надо отметить, что зонды пролетят слишком далеко от звездных систем, чтобы их обнаружили. По крайней мере, для цивилизации нашего уровня развития это невыполнимая задача.

Космическая программа НАСА «Пионер» (Pioneer) была одной из самых масштабных программ по беспилотному исследованию космоса. Всего было изготовлено 9 «Пионеров» 4 различных типов, 2 из них («Пионер-10» и -11) отправились в межзвездное путешествие.


Космический аппарат «Пионер-10» удаляется от нас со скоростью более 12 км/с. Зонд весит 270 кг, имеет габариты 2,7×2,0x6,6 м, оснащен генератором мощностью 40 ватт и параболической радиоантенной диаметром 2,7 м. Радиосигнал от «Пионера-10» к Земле за 15 часов, но, к сожалению, зонд уже давно молчит

Запущенный в 1972 году, «Пионер-10» стал первым космическим аппаратом, преодолевшим пояс астероидов и первым зондом, который сфотографировал Юпитер. «Пионер-11» запустили в 1973 году, он сделал первые снимки Сатурна.

Читайте также:  Международный конкурс космос глазами детей 2021

Об аппаратах «Пионер-10 и 11» теперь практически не говорят, потому что связи с зондами уже нет. «Пионер-11» перестал передавать радиосигналы еще в 1995 году, а «Пионер-10» — в 2003 году, когда закончился ресурс его радиоизотопного источника питания.

К настоящему времени умолкший «Пионер-11» должен находиться на расстоянии 12,89 млрд. км или 138,7 а.е. от Солнца. Его собрат, «Пионер-10», улетел на 16,1 млрд км или 108 а.е.

Лишившиеся электропитания «Пионеры» продолжают лететь в межзвездное пространство. Через 2 млн лет «Пионер-10» достигнет звезды Альдебаран, которая находится на расстоянии около 68 световых лет от Земли. Точный маршрут «Пионера-11» определить трудно, ведь с момента потери связи его точное местонахождение и направление полета неизвестно, специалисты НАСА лишь приблизительно рассчитали его — «Пионер-11» летит сторону созвездия Щита.

Кстати, на борту «Пионеров» находятся алюминиевые пластины весом по 120 грамм с изображением людей и координатами Солнечной системы.

В настоящее время на полпути к Плутону находится еще один дальний разведчик – зонд New Horizons.


New Horizons весит 470 кг, имеет габариты 0,7х2,1х2,7 м и мчится к Плутону со скоростью 15 км/с. Радиосигнал от зонда к Земле идет 3 часа 35 мин

Его запустили в январе 2006 года, когда Плутон еще имел статус планеты. Теперь зонд НАСА удалился от Солнца на 3,8 млрд км или 25,8 а.е., пересек орбиту Урана и достигнет Плутона в 2015 году.

New Horizons – это первый космический аппарат, который изучит границы нашей звездной системы. После того, как зонд сделает снимки Плутона, он отправится в Пояс Койпера – скопление «строительного мусора», который остался со времен рождения Солнечной системы. Кроме того, если за нами тайно шпионят инопланетяне, то прячутся они, скорее всего, именно там. Разумеется, миссия New Horizons прежде всего направлена не на поиск инопланетян, а на исследование геологии самого дальнего уголка звездной системы. По сравнению со «старичками» «Пионерами» и Вояджерами, New Horizons является настоящим шедевром технической мысли и оснащен 7 совершенными научными приборами, включая мощную фотокамеру-телескоп для фотографирования с большого расстояния.

Также зонд имеет пассивный радиометр для изучения состава и температуры атмосферы, тепловизор и разнообразные спектрометры. По количеству выдаваемой научной информации New Horizons будет стоить десятка «Пионеров».

Космический аппарат Rosetta не летит за пределы Солнечной системы и, на первый взгляд, выбивается из ряда дальних разведчиков. Тем не менее, миссия Rosetta уникальна тем, что направлена на изучение древнейших небесных тел Солнечной системы – комет и астероидов.


Rosetta весит 3000 кг, имеет габариты 2,8×2,1×32 м, движется со скоростью 8 км/с. Радиосигнал от зонда к Земле идет 43 мин.

Этот аппарат был запущен весной 2005 года и в настоящее время находится на расстоянии 774,9 млн. км или 5,1 а.е. – приблизительно на расстоянии орбиты Юпитера.

Зонд Rosetta уже изучил астероиды Стейнс, Лютеция и в данный момент пребывает в режиме гибернации (спячки) для экономии энергии. В январе 2014 года Rosetta «проснется», включит двигатель и выйдет на орбиту кометы C-G, после чего отправит спускаемый аппарат Philae на поверхность кометы. Philae должен совершить мягкую посадку с помощью специальной гарпунной системы сближения, которая буквально подтянет спускаемый аппарат к комете. После этого будут собраны данные о составе кометного вещества. Это будет финалом миссии Rosetta и началом новой страницы в изучении пояса астероидов.

Как видим, совсем немного космических аппаратов посещали дальние закоулки Солнечной системы. Изучение таких удаленных объектов, как Пояс Койпера и тем более Облако Оорта требует серьезных финансовых средств. Пока же ведущие космические агентства и частные компании сосредоточились на более близкой цели: поясе астероидов, который расположен между орбитами Марса и Юпитера. В этот регион в ближайшие десятилетия отправятся множество миссий, таких как OSIRIS-REX, а после сдачи в эксплуатацию космического комплекса с дальним кораблем Orion, НАСА отправит к астероидам и пилотируемые миссии.


К сожалению, пока на окраинах Солнечной системы побывало совсем мало зондов…

Основные средства космических программ будут направлены на масштабное освоение ближнего космоса и фундаментальные исследования, включая поиск обитаемых экзопланет.

В целом, к концу столетия ожидается настоящий космический бум, обусловленный выходом в космос многочисленных частных компаний, готовых реализовать самые амбициозные и рискованные проекты. Несмотря на мировой экономический кризис, на банковских счетах находится огромное количество корпоративных денег, которые лежат, что называется мертвым грузом. Это обеспечивает базу для самых разнообразных проектов: от организации реалити-шоу на Марсе до добычи полезных ископаемых из астероидов. Скорее всего, именно коммерческие организации первыми изучат все закоулки нашей звездной системы, а правительственные организации в это время смогут сосредоточить усилия на фундаментальных исследованиях.

Источник