Меню

История звезды во вселенной

Звезды

Вселенная составлена из материи, организованной в самые разнообразные формы: газ, пыль, твердое и холодное вещество (планеты), высокотемпературные газ и плазма (звездные туманности и звезды), а также загадочная темная материя.

Звезда представляет собой массивный газово-плазменный шар, излучающий собственный свет, в отличие от планет, которые светят отраженным светом. Типичная звезда — наше Солнце. Впрочем, звезды посылают нам не только свет (видимое излучение), но тепло (инфракрасное излучение), радиоволны и другие виды электромагнитного излучения.

Звезды можно назвать главными объектами во Вселенной, ведь в них заключено более 9/10 всего наблюдаемого нами вещества. Все звезды очень далеки от нас: расстояние до каждой из них (кроме Солнца) во много раз превышает расстояние от Земли до любой из планет Солнечной системы.

Сколько звезд во Вселенной?

В 2004 ученые из Австралии попытались определить примерное количество звезд. Для расчетов они выбрали случайный квадрат неба и измерили его яркость. Полученный результат разделили на среднюю яркость одной звезды и узнали количество звезд в этом квадрате. Затем этот результат распространили на всю небесную сферу, и у них получилось, что во Вселенной находится 70 000 000 000 000 000 000 000 звезд! Это намного больше, чем общее количество песчинок на нашей планете.

Рождение и жизнь звезды

Звезды, как и живые существа, рождаются, живут и умирают. Продолжительность их жизни настолько велика (до десятков миллиардов лет), что астрономы не могут проследить жизнь хотя бы одной из них от начала до конца. Зато ученых есть возможность наблюдать за звездами, находящимися на разных стадиях развития.

Образуются звезды из газопылевых облаков. Они сжимаются, потому что частицы притягиваются друг к другу. При этом температура и плотность вещества сильно возрастает. На данной стадии это уже не облако, но еще и не звезда. Поэтому его называют протозвездой (от греч. «протос» — «первый»). Постепенно ее температура достигает нескольких миллионов градусов, и тогда начинаются термоядерные реакции. Протозвезда становится звездой и многие миллиарды лет излучает энергию.

Звезда светит до тех пор, пока ее внешние слои не начинают остывать. Постепенно истощаются запасы водорода, что приводит к затуханию термоядерных реакций в недрах звезды. Остывающие внешние слои начинают светиться красным, и звезда превращается в красного гиганта. Красный гигант продолжает терять яркость до тех пор, пока не гаснет. В зависимости от размера красные гиганты могут, например, превратиться в красного карлика, или взорваться, превратившись в белого карлика, который впоследствии либо угаснет, либо превратится в нейтронную звезду, или сжаться в черную дыру.

Какие бывают звезды?

Звезды различаются по температуре, возрасту, массе, размерам, плотности, светимости и химическому составу.

По температуре различают красные, желтые, белые, голубые. Среди них самые холодные красные: температура на поверхности такой звезды составляет не более 3000°С. Желтые звезды — к ним относится и наше Солнце — имеют температуру около 6000°С; белые «разогреты» от 10 000 до 20 000°С; голубоватые же звезды — самые горячие — раскалены более чем до 30 000°С (иногда до 100 000°С). Но это температура поверхности звезд. Внутри этих светил еще жарче — до 20 млн °С.

В зависимости от размеров звезды величают гигантами (самые большие) и карликами (наименьшие). Диаметр так называемых белых карликов может быть в 100 с лишним раз меньше диаметра Солнца, при этом масса таких звезд примерно равна солнечной. По численности такие карлики составляют от 3 до 10% звездного «населения» нашей галактики.

Чем больше звезды, тем реже они встречаются в пространстве. Особенно редки гиганты. Самыми крупными являются красные гиганты. К примеру, диаметр красной звезды Бетельгейзе из созвездия Ориона более чем в 300 раз превосходит диаметр Солнца. А красный Антарес в созвездии Скорпиона по диаметру в 450 раз больше нашего светила и даже превышает орбиту Марса.

Одной из самых больших ныне известных звезд является красный сверхгигант Мю Цефея. Внутри этой звезды могли бы уместиться орбиты планет Солнечной системы вплоть до Юпитера. Мю Цефея, также известная как «гранатовая звезда Гершеля», является красным сверхгигантом и находится в созвездии Цефея.

Около половины звезд являются одиночными (как Солнце), остальные образуют двойные (например, Сириус), тройные и более сложные системы. Чем больше звезд в системе, тем реже она встречается. Известны звездные системы из семи членов, но более сложные пока не обнаружены.

Самые яркие

  • Самая яркая звезда во Вселенной — голубая звезда UW СМа.
  • Самая яркая звезда на видимом небосклоне—Денеб.
  • Самая яркая из ближайших звезд — Сириус.
  • Самая яркая звезда в Северном полушарии — Арктур.
  • Самая яркая звезда на нашем северном небе — Вега.

Межзвездные расстояния

Выражать расстояния между космическими телами в километрах неудобно. Это слишком мелкая единица измерения. Например, между Солнцем и ближайшей к нему звездой Проксима Центавра — 40 700 000 000 000 км.

Внутри Солнечной системы для измерения расстояний часто используют астрономическую единицу (а. е.). Одна астрономическая единица равна длине большой полуоси орбиты Земли. Это около 150 000 000 км. Расстояние до ближайшей звезды тогда можно записать как 270 000 а. е.

Но астрономическая единица тоже неудобна, поскольку расстояния между звездами обычно гораздо больше, чем между Солнцем и звездой Проксима Центавра. Для таких масштабов используют другие единицы: световой год и парсек. Световой год — это не время, а расстояние, проходимое светом за один земной год. В этом случае 270 000 а. е. записываются как 4,3 светового года.

Путь короче не стал, но звезда кажется как-то поближе. Большинство звезд, хорошо заметных невооруженным глазом, удалено на десятки и сотни световых лет.

Еще меньше это расстояние выглядит в парсеках (пк) — 1,32 пк (1 пк=3,26 светового года).

Что такое звездное скопление?

Звезды обычно объединяют в группы, которые называют скоплениями. Существуют шаровые и рассеянные скопления. Шаровое скопление состоит из большого количества звезд. В рассеянном их меньше, а само скопление имеет неправильную форму.

Термоядерные реакции

Звезду можно представить как гигантский ядерный очаг. Термоядерная реакция внутри нее превращает водород в гелий в ходе слияния (синтеза) ядер водорода, благодаря чему рождается столь необходимая для звезды энергия. Атомные ядра водорода — протоны — объединяются в ядра атомов гелия с двумя нейтронами. Однако протоны — электрически заряженные элементарные частицы, которые при приближении отталкиваются друг от друга. Так что из двух протонов новое ядро не построишь. Нужен какой-то элемент, причем более крепкий, чем силы электрического отталкивания. Эту роль в атомных ядрах играет другая ядерная частица — нейтрон.

Ядро обычного атома водорода имеет всего один протон. Но у его разновидностей — дейтерия и трития — в ядрах кроме одного протона имеется и нейтрон: у дейтерия один, а у трития два. Оба они также присутствуют в недрах звезд.

Атом дейтерия соединяется с атомом трития, образуя атом гелия и свободный нейтрон. Именно из гелия и формируется ядро звезды. В нем также содержатся более тяжелые химические элементы (например, железо), которые были захвачены из «материнской» туманности или же образуются во время термоядерных реакций. В результате этого процесса высвобождается огромное количество энергии.

Скорость протекания ядерного синтеза пропорциональна массе звезды в четвертой степени. Это значит, что если масса одной звезды больше массы второй в два раза, то на первой ядерное топливо горит в 16 раз (2 в четвертой степени) раз быстрее.

Следовательно, массивные звезды сгорают быстрее. Самые тяжелые сжигают весь водород за несколько сотен тысяч лет, а легкие красные звезды могут «тлеть» несколько миллиардов лет.

Если говорить о возрасте, то молодыми считаются звезды очень большой массы и очень высокой светимости, то есть те, которые излучают энергии во много раз больше, чем Солнце. Они гораздо моложе нашего светила, потому что столь интенсивно теряют энергию, что в состоянии существовать только сравнительно короткое по астрономическим масштабам время. Недавно возникшие звезды — это, прежде всего, гигантские горячие звезды голубоватого цвета, так называемые голубые сверхгиганты.

Читайте также:  Мне не нужна была их помощь она была вселенной

Источник

Естествознание.ру

Звезды

Каждая звезда во Вселенной проходит свой жизненный путь — от рождения до смерти. Это называется звездной эволюцией. Для звезд длительность каждого этапа эволюции разная и зависит в основном от размеров звезды и внешних воздействий (наличия рядом другой звезды или звезд и т. п.). Однако последовательность этапов всегда одна и та же.

Схематично рассмотрим все этапы звездной эволюции. Из первичного материала (1) возникают либо звезды малой и средней величины — субгиганты (2), либо сверхгиганты и гипергиганты (3). Со временем они превращаются в красных гигантов (4) или красных супергигантов (5). Наконец, звезды взрываются, образуя планетарную туманность (6) или суперновую звезду (7). После взрыва на месте погибшей звезды небольшого размера остается ее остывающее ядро—белый карлик размером с планету (8). Взрыв красного супергиганта (суперновая звезда) заканчивается образованием черной дыры (9) или нейтронной звезды (10).

Начало

Любая звезда начинает свою жизнь как холодное разреженное облако межзвездного газа, оставшегося либо после Большого взрыва, либо после взрыва другой звезды (как вариант — звезд). Главная движущая сила, строящая звезду, — сила гравитации.

Рождение

Постепенно под действием силы гравитации аморфное газообразное облако сжимается, движение частиц в нем ускоряется. В его центре становится все жарче, и вот вспыхивает новая звезда — протозвезда. После этого процесс сжатия облака останавливается.

Развитие

Звезда живет в среднем 5-10 млрд лет. Затем на ней заканчивается основное топливо — водород, в реакцию вступают углерод и гелий. Однако их температура горения намного больше, чем у водорода, поэтому звезда значительно увеличится в размерах и превратится в красный гигант. Естественно, при этом ближайшие к гиганту планеты либо уничтожаются, либо превращаются в пылающие каменные шары.

Гибель

В состоянии красного гиганта ни одна звезда не задерживается долго. Реакция горения гелия и углерода нестабильна. Рано или поздно звезду разрывает со страшной силой, превращающей в пыль остатки планетарной системы.

Будущее вселенной

И раз уж мы проследили, как рождаются и умирают звезды, заглянем в будущее всей нашей расширяющейся Вселенной. С момента Большого взрыва (11) прошло примерно 14 млрд млрд лет (12). Если расширение продолжится с той же скоростью, что и сейчас, то соседние галактики через 100 млрд лет разойдутся на такие расстояния, что перестанут быть видимы (13). Через 100 триллионов миллиардов лет погаснет большая часть звезд, и во Вселенной будут преобладать черные дыры (14). Процесс образования звезд окончательно прекратится через триллион триллионов лет. Вся энергия Большого взрыва исчерпается, и во Вселенной наступит полная темнота (15).

Источник

Звезды

Звезды — небесные тела и гигантские светящиеся сферы плазмы. Только в нашей галактике Млечный Путь их насчитывают миллиарды, включая Солнце. Не так давно мы узнали, что некоторые из них еще и располагают планетами.

История наблюдений за звездами

Сейчас можно легко купить телескоп и наблюдать на ночным небом или воспользоваться телескопами онлайн на нашем сайте. С древних времен звезды на небе играли важную роль во многих культурах. Они отметились не только в мифах и религиозных историях, но и послужили первыми навигационными инструментами. Именно поэтому астрономия считается одной из древнейших наук. Появление телескопов и открытие законов движения и гравитации в 17 веке помогли понять, что все звезды напоминают наше Солнце, а значит подчиняются тем же физическим законам.

Фотография умирающей звезды. Изображение получено космическим телескопом Хаббл

Изобретение фотографии и спектроскопии в 19 веке (исследование длин волн света, исходящих от объектов) позволили проникнуть в звездный состав и принципы движения (создание астрофизики). Первый радиотелескоп появился в 1937 году. С его помощью можно было отыскать невидимое звездное излучение. А в 1990 году удалось запустить первый космический телескоп Хаббл, способный получить наиболее глубокий и детализированный взгляд на Вселенную (качественные фото Хаббла для различных небесных тел можно найти на нашем сайте).

Наименование звезд Вселенной

Древние люди не обладали нашими техническими преимуществами, поэтому в небесных объектах узнавали образы различных существ. Это были созвездия, о которых сочиняли мифы, чтобы запомнить названия. Причем практически все эти имена сохранились и используются сегодня.

В современном мире насчитывается 88 созвездий (среди них 12 относятся к зодиакальным). Самая яркая звезда получает обозначение «альфа», вторая – «бета», а третья – «гамма». И так продолжается до конца греческого алфавита. Есть звезды, которые отображают части тела. Например, ярчайшая звезда Ориона Бетельгейзе (Альфа Ориона) – «рука (подмышка) великана».

Красный сверхгигант Бетельгейзе

Не стоит забывать, что все это время составлялось множество каталогов, чьи обозначения используют до сих пор. Например, Каталог Генри Дрейпера предлагает спектральную классификацию и позиции для 272150 звезд. Обозначение Бетельгейзе – HD 39801.

Но звезд на небе невероятно много, поэтому для новых используют аббревиатуры, обозначающие звездный тип или каталог. К примеру, PSR J1302-6350 – пульсар (PSR), J – используется система координат «J2000», а последние две группы цифр – координаты с кодами широты и долготы.

Звезды все одинаковые? Ну, когда наблюдаешь без использования техники, то они лишь слегка отличаются по яркости. Но ведь это всего лишь огромные газовые шары, так? Не совсем. На самом деле, у звезд есть классификация, основанная на их главных характеристиках.

Среди представителей можно встретить голубых гигантов и крошечных коричневых карликов. Иногда попадаются и причудливые звезды, вроде нейтронных. Погружение во Вселенную невозможно без понимания этих вещей, поэтому давайте познакомимся со звездными типами поближе.

Типы звезд Вселенной

Это то, что мы видим до появления полноценной звезды. Протозвезда представляет собою скопление газа, рухнувшего от молекулярного облака. Эволюционная фаза занимает примерно 100000 лет. Дальше гравитация набирает силу, и заставляет образование разрушаться. Гравитация накаляет газ и вынуждает его выделять энергию.


Звезды типа Т Тельца

Этот момент идет перед переходом в звезду главной последовательности. Наступает в завершении протозвезды, когда энергию дарит только разрушающая ее гравитационная сила. У таких звезд еще нет достаточного нагрева и давления, чтобы активировать процесс ядерного синтеза. На звездах типа Т Тельца можно заметить огромные пятна, вспышки рентгеновского излучения и мощные порывы ветров. Эта стадия охватывает 100000 миллионов лет.


Звезды Главной последовательности

Большая часть вселенских звезд находится в стадии главной последовательности. Можно вспомнить Солнце, Альфа Центавра А и Сирус. Они способны кардинально отличаться по масштабности, массивности и яркости, но выполняют один процесс: трансформируют водород в гелий. При этом производится огромный энергетический всплеск.

Такая звезда переживает ощущение гидростатического баланса. Гравитация заставляет объект сжиматься, но ядерный синтез выталкивает его наружу. Эти силы работают на уравновешивании, и звезде удается сохранять форму сферы. Размер зависит от массивности. Черта – 80 масс Юпитера. Это минимальная отметка, при которой возможно активировать процесс плавления. Но в теории максимальная масса – 100 солнечных.

Когда звезда полностью израсходует внутреннее топливо, то больше не может создавать внешнее давление, а значит не противодействует внутреннему. Звезда сжимается, а оболочка вокруг ядра воспламеняется, продлевая ей жизнь, но увеличивая в размере. Звезда трансформируется в красного гиганта и может быть в 100 раз крупнее, чем представитель в главной последовательности. Когда не остается водорода, начинает гореть гелий и даже более тяжелые элементы. На этот этап уходит несколько сотен миллионов лет.

Если топлива нет, то у звезды больше не хватает массы, чтобы продлить ядерный синтез. Она превращается в белого карлика. Внешнее давление не работает, и она сокращается в размерах из-за силы тяжести. Карлик продолжает сиять, потому что все еще остаются горячие температуры. Когда он остынет, то обретет фоновую температуру. На это уйдут сотни миллиардов лет, поэтому пока просто невозможно найти ни единого представителя.


Красный карлик

Это наиболее распространенный вид. Перед нами звезда главной последовательности с низкой массой, из-за чего значительно уступает в температуре Солнцу. Но выигрывает за счет продолжительности жизни. Дело в том, что им удается расходовать топливо в медленных темпах, поэтому отличаются значительной экономией. Наблюдения говорят, что такие объекты способны просуществовать до 10 триллионов лет. Наименьшие экземпляры достигают всего 0.075 раз солнечной массы, но могут набирать и 50%.


Нейтронные звезды

Когда звезда в 1.35-2.1 раз больше солнечной массы, то не завершает существование в виде белого карлика, а освещает небо взрывом сверхновой. После этого остается ядро, которое и выступает нейтронной звездой. Это очень интересный объект, так как всецело представлен нейтронами. Дело в том, что мощная гравитационная сила сжимает протоны и электроны, формирующие нейтроны. Если масса звезды была еще больше, то перед нами развернется черная дыра.


Сверхгигант

Наиболее крупные звезды называют сверхгигантами. Они в десятки раз больше солнечной массы, но им не так уж и повезло: чем больше размер, тем короче жизнь. Они стремительно расходуют внутреннее топливо (несколько миллионов лет). Поэтому проживают короткую жизнь и умирают как сверхновые.

Как вы поняли, существуют различные виды звезд. Понимание этого, поможет вам разобраться в эволюционной стадии объекта и даже понять, что его ждет.

Коричневыми карликами называют объекты, которые слишком крупные для планет, но и чересчур маленькие для звезд. Их масса начинается с двойной Юпитера и может достигать 0.08 солнечной. Формируются как и обычные звезды – из коллапсирующего газового и пылевого облака. Но им не хватает температуры и давления, чтобы запустить ядерный синтез. Долгое время их считали всего лишь теоретическими объектами, пока в 1995 году не нашли первый экземпляр.

Цефеиды – звезды, пережившие эволюцию из главной последовательности к полосе неустойчивости Цефеиды. Это обычные радио-пульсирующие звезды с заметной связью между периодичностью и светимостью. За это их ценят ученые, ведь они являются превосходными помощниками в определении дистанций в пространстве.

Они также демонстрируют перемены лучевой скорости, соответствующие фотометрическим кривым. У более ярких наблюдается длительная периодичность.

Классические представители – сверхгиганты, чья масса в 2-3 раза превосходит солнечную. Они пребывают в моменте сжигания топлива на этапе главной последовательности и трансформируются в красных гигантов, пересекая линию неустойчивости цефеид.

Если говорить точнее, то понятие «двойная звезда» не отображает реальную картинку. На самом деле, перед нами звездная система, представленная двумя звездами, совершающими обороты вокруг общего центра масс. Многие совершают ошибку и принимают за двойную звезду два объекта, которые кажутся расположенными близко при наблюдении невооруженным глазом.

Ученые извлекают из этих объектов пользу, потому что они помогают вычислить массу отдельных участников. Когда они передвигаются по общей орбите, то вычисления Ньютона для гравитации позволяют с невероятной точностью рассчитать массу.

Можно выделить несколько категорий в соответствии с визуальными свойствами: затмевающие, визуально бинарные, спектроскопические бинарные и астрометрические.

Затмевающие – звезды, чьи орбиты создают горизонтальную линию от места наблюдения. То есть, человек видит двойное затмение на одной плоскости (Алголь).

Визуальные – две звезды, которые можно разрешить при помощи телескопа. Если одна из них светит очень ярко, то бывает сложно отделить вторую.

Формирование звезды

Давайте внимательнее изучим процесс рождения звезды. Сначала мы видим гигантское медленно вращающееся облако, наполненное водородом и гелием. Внутренняя гравитация заставляет его сворачиваться внутрь, из-за чего вращение ускоряется. Внешние части трансформируются в диск, а внутренние в сферическое скопление. Материал разрушается, становясь горячее и плотнее. Вскоре появляется шарообразная протозведа. Когда тепло и давление вырастают до 1 миллиона °C, атомные ядра сливаются и зажигается новая звезда. Ядерный синтез превращает небольшое количество атомной массы в энергию (1 грамм массы, перешедший в энергию, приравнивается к взрыву 22000 тонн тротила). Посмотрите также объяснение на видео, чтобы лучше разобраться в вопросе звездного зарождения и развития.

Звездная эволюция

Основываясь на массе звезды, можно определить весь ее эволюционный путь, так как он проходит по определенным шаблонным этапам. Есть звезды промежуточной массы (как Солнце) в 1.5-8 раз больше солнечной массы, более 8, а также до половины солнечной массы. Интересно, что чем больше масса звезды, тем короче ее жизненный срок. Если она достигает меньше десятой части солнечной, то такие объекты попадают в категорию коричневых карликов (не могут зажечь ядерный синтез).

Объект с промежуточной массой начинает существование с облака, размером в 100000 световых лет. Для сворачивания в протозвезду температура должна быть 3725°C. С момента начала водородного слияния может образоваться Т Тельца – переменная с колебаниями в яркости. Последующий процесс разрушения займет 10 миллионов лет. Дальше ее расширение уравновесится сжатием силы тяжести, и она предстанет в виде звезды главной последовательности, получающей энергию от водородного синтеза в ядре. Нижний рисунок демонстрирует все этапы и трансформации в процессе эволюции звезд.

Этапы эволюции звезды

Когда весь водород переплавится в гелий, гравитация сокрушит материю в ядро, из-за чего запустится стремительный процесс нагрева. Внешние слои расширяются и охлаждаются, а звезда становится красным гигантом. Далее начинает сплавляться гелий. Когда и он иссякает, ядро сокращается и становится горячее, расширяя оболочку. При максимальной температуре внешние слои сдуваются, оставляя белый карлик (углерод и кислород), температура которого достигает 100000 °C. Топлива больше нет, поэтому происходит постепенно охлаждение. Через миллиарды лет они завершают жизнь в виде черных карликов.

Процессы формирования и смерти у звезды с высокой массой происходят невероятно быстро. Нужно всего 10000-100000 лет, чтобы она перешла от протозвезды. В период главной последовательности это горячие и голубые объекты (от 1000 до миллиона раз ярче Солнца и в 10 раз шире). Далее мы видим красного сверхгиганта, начинающего сплавлять углерод в более тяжелые элементы (10000 лет). В итоге формируется железное ядро с шириною в 6000 км, чье ядерное излучение больше не может противостоять силе притяжения.

Когда масса звезды приближается к отметке в 1.4 солнечных, электронное давление больше не может удерживать ядро от крушения. Из-за этого формируется сверхновая. При разрушении температура поднимается до 10 миллиардов °C, разбивая железо на нейтроны и нейтрино. Всего за секунду ядро сжимается до ширины в 10 км, а затем взрывается в сверхновой типа II.

Туманность Эскимоса — один из последних этапов эволюции небольшой звезды

Если оставшееся ядро достигало меньше 3-х солнечных масс, то превращается в нейтронную звезду (практически из одних нейтронов). Если она вращается и излучает радиоимпульсы, то это пульсар. Если ядро больше 3-х солнечных масс, то ничто не удержит ее от разрушения и трансформации в черную дыру.

Звезда с малой массой тратит топливные запасы так медленно, то станет звездой главной последовательности только через 100 миллиардов – 1 триллион лет. Но возраст Вселенной достигает 13.7 миллиардов лет, а значит такие звезды еще не умирали. Ученые выяснили, что этим красным карликам не суждено слиться ни с чем, кроме водорода, а значит, они никогда не перерастут в красных гигантов. В итоге, их судьба – охлаждение и трансформация в черные карлики.

Двойные звезды

Мы привыкли, что наша система освещается исключительно одной звездой. Но есть и другие системы, в которых две звезды на небе вращаются по орбите относительно друг друга. Если точнее, только 1/3 звезд, похожих на Солнце, располагаются в одиночестве, а 2/3 – двойные звезды. Например, Проксима Центавра – часть множественной системы, включающей Альфа Центавра А и B. Примерно 30% звезд в Млечной Пути многократные.

Двойная звезда в Большой Медведице

Этот тип формируется, когда две протозвезды развиваются рядом. Одна из них будет сильнее и начнет влиять гравитацией, создавая перенос массы. Если одна предстанет в виде гиганта, а вторая – нейтронная звезда или черная дыра, то можно ожидать появления рентгеновской двойной системы, где вещество невероятно сильно нагреется – 555500 °C. При наличии белого карлика, газ из компаньона может вспыхнуть в виде новой. Периодически газ карлика накапливается и способен мгновенно слиться, из-за чего звезда взорвется в сверхновой типа I, способной затмить галактику своим сиянием на несколько месяцев.

Характеристика звезд

Для описания яркости звездных небесных тел используют величину и светимость. Понятие величины основывается еще на работах Гиппарха в 125 году до н.э. Он пронумеровал звездные группы, полагаясь на видимую яркость. Самые яркие – первая величина, и так до шестой. Однако расстояние между Землей и звездой способно влиять на видимый свет, поэтому сейчас добавляют описание фактической яркости – абсолютная величина. Ее вычисляют при помощи видимой величины, как если бы она составляла 32.6 световых лет от Земли. Современная шкала величин поднимается выше шести и опускается ниже единицы (видимая величина Сириуса достигает -1.46). Ниже можете изучить список самых ярких звезд на небе с позиции наблюдателя Земли.

Список самых ярких звезд видимых с Земли

870

530

400

330

610

290

1550

400

Название Расстояние, св. лет Видимая величина Абсолютная величина Спектральный класс Небесное полушарие
0 Солнце 0,0000158 −26,72 4,8 G2V
1 Сириус (α Большого Пса) 8,6 −1,46 1,4 A1Vm Южное
2 Канопус (α Киля) 310 −0,72 −5,53 A9II Южное
3 Толиман (α Центавра) 4,3 −0,27 4,06 G2V+K1V Южное
4 Арктур (α Волопаса) 34 −0,04 −0,3 K1.5IIIp Северное
5 Вега (α Лиры) 25 0,03 (перем) 0,6 A0Va Северное
6 Капелла (α Возничего) 41 0,08 −0,5 G6III + G2III Северное
7 Ригель (β Ориона) 0,12 (перем) −7 [3] B8Iae Южное
8 Процион (α Малого Пса) 11,4 0,38 2,6 F5IV-V Северное
9 Ахернар (α Эридана) 69 0,46 −1,3 B3Vnp Южное
10 Бетельгейзе (α Ориона) 0,50 (перем) −5,14 M2Iab Северное
11 Хадар (β Центавра) 0,61 (перем) −4,4 B1III Южное
12 Альтаир (α Орла) 16 0,77 2,3 A7Vn Северное
13 Акрукс (α Южного Креста) 0,79 −4,6 B0.5Iv + B1Vn Южное
14 Альдебаран (α Тельца) 60 0,85 (перем) −0,3 K5III Северное
15 Антарес (α Скорпиона) 0,96 (перем) −5,2 M1.5Iab Южное
16 Спика (α Девы) 250 0,98 (перем) −3,2 B1V Южное
17 Поллукс (β Близнецов) 40 1,14 0,7 K0IIIb Северное
18 Фомальгаут (α Южной Рыбы) 22 1,16 2,0 A3Va Южное
19 Бекрукс, Мимоза (β Южного Креста) 1,25 (перем) −4,7 B0.5III Южное
20 Денеб (α Лебедя) 1,25 −7,2 A2Ia Северное
21 Регул (α Льва) 69 1,35 −0,3 B7Vn Северное
22 Адара (ε Большого Пса) 1,50 −4,8 B2II Южное
23 Кастор (α Близнецов) 49 1,57 0,5 A1V + A2V Северное
24 Гакрукс (γ Южного Креста) 120 1,63 (перем) −1,2 M3.5III Южное
25 Шаула (λ Скорпиона) 330 1,63 (перем) −3,5 B1.5IV Южное

Другие известные звезды:

Вы могли заметить, что звезды отличаются по цвету, который, на самом деле, зависит от поверхностной температуры.

Класс Температура,K Истинный цвет Видимый цвет Основные признаки
O 30 000—60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000—30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500—10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000—7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000—6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500—5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметно. Появляется полосы поглощения TiO.
M 2000—3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Все ещё заметны линии металлов.

Каждая звезда обладает одним цветом, но производит широкий спектр, включая все виды излучения. Разнообразные элементы и соединения поглощают и выбрасывают цвета или длины волн цвета. Изучая звездный спектр, можно разобраться в составе.

Температура звездных небесных тел измеряется в кельвинах с температурой нуля, равной -273.15 °C. Температура темно-красной звезды – 2500К, ярко-красной – 3500К, желтой – 5500К, голубой – от 10000К до 50000К. На температуру частично вaлияет масса, яркость и цвет.

Размер звездных космических объектов определяется в сравнении с солнечным радиусом. У Альфа Центавра А – 1.05 солнечных радиусов. Размеры могут быть разными. Например, нейтронные звезды в ширину простираются на 20 км, а вот сверхгиганты – в 1000 раз больше солнечного диаметра. Размер влияет на звездную яркость (светимость пропорциональна квадрату радиуса). На нижних рисунках можно рассмотреть сравнение размеров звезд Вселенной, включая сопоставление с параметрами планет Солнечной системы.

Сравнительные размеры звезд

Здесь также все вычисляется в сравнении с солнечными параметрами. Масса Альфа Центавра А – 1.08 солнечных. Звезды с одинаковыми массами могут не сходиться по размерам. Масса звезды влияет на температуру.

Звезды генерируют магнитные поля. В случае с Солнцем, исследователи выяснили, что его магнитное поле способно достичь очень сконцентрированного состояния в небольших участках, создавая солнечные пятна или же извержения – выбросы корональной массы. Магнитное поле зависит от скорости вращения (увеличивается с нарастанием и уменьшается с замедлением).

Металличность обозначает количество тяжелых элементов (тяжелее гелия). Основываясь на металличности, выделяют три звездных поколения. До сих пор ученым не удалось найти наиболее древнее (III), полностью лишенное металлов. Во время смерти, именно они выпустили первые тяжелые элементы в пространство, из которых и появилось поколение II. По цепочки их смерть привела к рождению поколения I (Солнце).

Классификация звезд

В типах звезд главную роль играет спектр в системе Моргана-Кинана, выделяющей 8 спектральных классов. Каждый из них соответствует диапазону поверхностных температур: O, B, A, F, G, K, M и L (от наиболее горячего к холодному). Каждый из них делится еще на 10 типов (от 0 до 9).

Эта система учитывает и светимость. Наиболее крупные и ярчайшие обладают наименьшими римскими цифрами: Ia – яркий сверхгигант, Ib – сверхгигант, II – яркий гигант, III – гигант; IV – субгигант и V – главная последовательность или карлик.

Структура звезд Вселенной

Большую часть своего существования звезда пребывает в этапе главной последовательности. Представлена ядром, участками радиации и конвекции, фотосферой, хромосферой и короной. Ядро – территория, где происходит ядерное слияние, подпитывающее звезду. Энергия этих реакций переходит из радиационной зоны наружу. В конвективной энергия транспортируется горящими газами. Если звезда массивнее Солнца, то конвективная в ядре и излучает во внешних слоях, а если уступает по массивности, то излучает в ядре, а конвективная во внешних слоях. Объекты с промежуточной массой спектрального типа А способны излучать везде.

Далее в звездном строении идет фотосфера, которую часто называют поверхностью. За ней – красноватая хромосфера, из-за наличия водорода. Внешний шар звезды – корона. Она невероятно горячая и может быть связана с конвекцией во внешних слоях. Нижнее видео детально описывает движение звезд на небе.

Источник

Adblock
detector