Меню

Как будет располагаться комета движущаяся по орбите вокруг солнца по часовой стрелке

Как будет располагаться комета движущаяся по орбите вокруг солнца по часовой стрелке

Комета движется вокруг Солнца по орбите с большой полуосью 300 а. е. и эксцентриситетом 0,95. Выберите два утверждения, которые соответствуют характеру движения этой кометы.

1) Эта комета может столкнуться с Землёй.

2) Эта комета никогда не бывает ближе к Солнцу, чем Юпитер.

3) В афелии комета удаляется от Солнца больше чем на 500 а. е.

4) Период обращения кометы вокруг Солнца меньше, чем у Нептуна.

5) Хвост этой кометы наибольший в афелии орбиты.

1) Перигелий, т. е. наименьшее расстояние, на которое комета приближается к Солнцу равен

Следовательно, эта комета не может столкнуться с Землей. Утверждение 1 — неверно.

2) Афелий Юпитера, т. е. наибольшее удаление от Солнца, составляет примерно 5,5 а. е., следовательно, утверждение 2 — верно.

3) Афелий кометы равен

Утверждение 3 — верно.

4) По третьему закону Кеплера

где — звёздный период обращения и большая полуось Земли. Отсюда период обращения кометы примерно равен 5196 лет. Период обращения Нептуна составляет примерно 164 года. Утверждение 4 — неверно.

5) Хвост кометы — вытянутый шлейф из пыли и газа кометного вещества, образующийся при приближении кометы к Солнцу и видимый благодаря рассеянию на нём солнечного света. Он тем больше, чем ближе комета к Солнцу. Наибольший хвост у кометы будет в перигелии орбиты. Утверждение 5 — неверно.

Источник

Почему у кометы есть четкая траектория?

Кометы – удивительные космические явления, которые иногда можно наблюдать с поверхности Земли невооруженным глазом. Из чего состоят кометы, каким законам они подчиняются и почему движение данных небесных тел происходит по определенной траектории?

Что такое комета?

Комета – это космическое тело небольшого размера, которое состоит из камня, металла, льда (в спрессованном виде), и движется вокруг Солнца по вытянутой орбите с определенным периодом.

Отличительной особенностью кометы является наличие светящегося газопылевого хвоста и комы. Они возникают при приближении тела к самой крупной звезде нашей системы. Пока комета движется посреди космического пространства, рассмотреть ее не удается.

Составляющие части кометы:

  1. Ядро. Занимает большую часть всей массы кометы. Располагается в центре и отличается высокой плотностью. По одной из теорий состоит преимущественно из спрессованного льда с частицами метеорного вещества. Согласно другим наблюдениям, в составе преобладает пыль.
  2. Кома. Туманная оболочка вокруг ядра, имеющая чашеобразную форму. Кома имеет газопылевой состав и делится на три части: внутреннюю, видимую, ультрафиолетовую. Размер колеблется в пределах 100 000 – 1 400 000 км. В сочетании с ядром кома представляет голову кометы.
  3. Хвост. Светящаяся часть кометы, которая может иметь различные параметры и формы. Хвост состоит из мелких частиц пыли и газа, поэтому не имеет четких границ. Он образуется под действием солнечного ветра. Газовые частицы становятся видимыми только вблизи Солнца, поскольку при этом происходит их интенсивное нагревание и испарение (под действием ультрафиолета).
Читайте также:  Почему кладовая солнца называется сказкой были

Строение кометы

Откуда же берутся кометы? Они прилетают из пояса Копейра, а также облака Оорта. Пояс Копейра представлен поясом астероидов, который располагается за орбитой планеты Нептун. Облако Оорта является скоплением малых небесных тел, находящихся на границе Солнечной системы вдали от всех планет.

Как обращаются кометы?

На протяжении многих лет они могут передвигаться вдали от Солнца. Но иногда две кометы сталкиваются либо пролетают очень близко друг к другу. В результате меняется траектория движения – комета может начать направляться в сторону нашей звезды.

Постепенно приближаясь к Солнцу, космическое тело все сильнее ощущает силу притяжения. Из-за этого скорость кометы возрастает еще больше. При достаточно близком расстоянии к Солнцу происходит нагревание газов, и комета становится видимой.

Перемещаются кометы по разным орбитам в форме конуса. Ядро подчиняется законам небесной механики. Таким образом, когда комета проходит вблизи какой-то планеты, на нее воздействует сила притяжения. Тем самым происходит ускорение тела в определенном направлении. Поэтому кометные орбиты имеют вытянутые формы в отличие от эллиптических орбит планет Солнечной системы.

Орбита кометы

Кометы делятся на два вида по периодичности обращения вокруг звезды: короткопериодические (до 200 лет) и долгопериодические (более 200 лет).

Кометы могут неоднократно обращаться вокруг Солнца либо появиться лишь раз – это тоже зависит от траектории. Кроме того, тела с недостаточной массой могут полностью испариться под действием солнечных лучей. Иногда кометы даже распадаются на несколько частей. Так происходит из-за рыхлой структуры некоторых тел.

Главной составляющей частью кометы является ядро, которое перемещается по орбите. Оно подвергается законам небесной механики, которые определяют движение ядра в космическом пространстве. Обычно кометы передвигаются вдали от Солнца, но иногда они сталкиваются и при стечении обстоятельств меняют траекторию движения. Ядро оказывается в гравитационном поле других космических тел, с более значимой массой. Среди них – планеты Солнечной системы и само Солнце. Таким образом, траектория кометы – это орбита ее ядра.

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Откуда берутся кометы и почему их орбиты не такие, как у планет

Вместо почти круговых, как у планет, орбиты комет чрезвычайно вытянуты. Почему это так?

Если вы посмотрите на движение планет в нашей Солнечной системе, то увидите почти круговые орбиты, а точнее — эллиптические с очень малым эксцентриситетом. Это было открыто еще 400 лет назад Иоганом Кеплером, который на основе анализа астрономических наблюдений Тихо Браге вывел три своих эмпирических закона, описывающих движение планет вокруг Солнца. Позднее Исаак Ньютон, при помощи открытого им закона всеобщего тяготения обосновал, почему орбиты планет имеют такую форму.

Но кометы, посещающие Солнечную систему, двигаются по очень вытянутым орбитам, похожим на параболу. Почему это так? Попробуем разобраться.

Но, вначале мы рассмотрим строение солнечной системы и ответим на вопрос: почему все объекты в ней движутся именно так — совершая обороты вокруг Солнца по почти круговым орбитам?

Читайте также:  План кладовая солнца озаглавить все главы

В нашей Солнечной системе имеется четыре внутренних, каменистых планеты — Меркурий, Венера, Земля и Марс, за пределами которых находится пояс астероидов, далее располагаются газовые планеты — Юпитер, Сатурн, Уран и Нептун со множеством своих спутников и колец, далее идет пояс Койпера. За поясом Койпера следует большой рассеянный диск, который переходит в сферическое облако Оорта, простирающееся на огромное расстояние: возможно, один или два световых года, почти на полпути к следующей звезде.

Чтобы быть на устойчивой орбите на определенном расстоянии от Солнца, согласно законам тяготения, каждый объект должен двигаться с определенной скоростью. В терминах физики это означает, что должен быть баланс между потенциальной энергией системы (в виде гравитационной потенциальной энергии) и энергией движения тела (кинетическая энергия). Чем ближе планета к Солнцу — тем больше сила гравитации и поэтому необходимо двигаться быстрее, чтобы иметь стабильную орбиту.

Вот почему, если посмотреть на средние скорости планет на их орбитах, то они такие:

Из-за большой массы Солнца в сравнении с массами вращающихся вокруг него планет их орбиты близки к круговой, поскольку сами планеты находятся относительно далеко друг от друга и мало гравитационно взаимодействуют между собой.

Но есть и другие гравитационные взаимодействия, которые происходят в солнечной системе. Если астероид или объект из пояса Койпера проходят близко к большой массе, например Юпитеру или Нептуну, гравитационное взаимодействие с ними придает импульс движения. Они могут изменить свою скорость на значительную величину, вплоть до нескольких километров в секунду, практически в любом направлении. Подробнее об этом читайте в статье «Как при помощи гравитации «Вояджеры» покинули Солнечную систему» .

Для астероида или кометы это может привести к тому, что его орбита переходит от примерно круговой к вытянутой эллиптической. Хорошим примером этого является орбита кометы Энке, которая, возможно, имеет свое происхождение из пояса астероидов.

С другой стороны, если объект (астероид или комета) находится очень далеко от Солнца, например, в поясе Койпера или облаке Оорта, он может двигаться со скоростью от 4 км/с (для внутреннего пояса Койпера) до нескольких сотен метров в секунду (для облака Оорта). Гравитационное взаимодействие с крупной планетой, подобной Нептуну, может изменить его орбиту в одном из двух направлений. Если Нептун забирает кинетическую энергию, то он направит тело во внутреннюю Солнечную систему, создав длиннопериодический эллипс, похожий на орбиту кометы Свифта–Таттла, которая вызывает метеорный дождь Персеиды. Это будет эллипс, который едва ли гравитационно связан с Солнцем, но тем не менее это эллипс.

Но если Нептун или любое другое массивное небесное тело (мы все еще не знаем, что там есть во внешней Солнечной системе) дает дополнительную кинетическую энергию, то это может изменить орбиту кометы со связанной эллиптической на несвязанную гиперболическую (параболическая, между прочим, является несвязанной орбитой, которая находится между эллиптической и гиперболической). Например, комета ISON, которая в 2013 году распалась, приблизившись к Солнцу, была на гиперболической орбите.

Читайте также:  Слои солнца зона переноса лучистой энергии

Как правило, все кометы, происходящие из внешней Солнечной системы, имеют скорости, отличающиеся между связанными и несвязанными орбитами, в пределах нескольких км/с.

Поэтому им не нужно много энергии, чтобы войти во внутреннюю Солнечную систему. При очень малых скоростях они бы просто падали на Солнце под воздействием его гравитации. В принципе, все они рано или поздно так и сделают, как комета ISON.

Для очень отдаленных масс в нашей солнечной системе даже самое небольшое изменение их скорости может подтолкнуть к изменению орбиты с почти круговой до вытянутой к Солнцу параболической. Хотя эти гравитационные подталкивания от соседних объектов происходят в более или менее случайных направлениях, мы видим только те кометы, которые приближаются к Солнцу, при этом испуская хвосты и становясь достаточно яркими, чтобы их можно было заметить. Вот откуда берутся кометы.

Источник

Как будет располагаться комета движущаяся по орбите вокруг солнца по часовой стрелке

Комета движется по эллиптической орбите вокруг Солнца. Как изменяются перечисленные в первом столбце физические величины во время её приближения к Солнцу, если считать, что на нее действует только тяготение Солнца? Установите соответствие между физическими величинами, перечисленными в первом столбце, и изменениями, перечисленными во втором столбце. Запишите в таблицу выбранные цифры под соответствующими буквами.

В) Кинетическая энергия

Г) Потенциальная энергия

Д) Полная механическая энергия

1) Не изменяется

2) Только увеличивается по величине

3) Только уменьшается по величине

4) Увеличивается по величине и изменяется по направлению

5) Уменьшается по величине и изменяется по направлению

6) Увеличивается по величине, не изменяется по направлению

7) уменьшается по величине, не изменяется по направлению

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ ИХ ИЗМЕНЕНИЯ
A Б В Г Д

При движении кометы по эллиптической орбите вокруг Солнца для кометы выполняется закон сохранения полной механической энергии, поскольку на нее, согласно условию, не действует никаких внешних сил, совершающих работу (Д — 1). Потенциальная энергия кометы связана с расстоянием до Солнца соотношением Следовательно, при приближении кометы к Солнцу, потенциальная энергия уменьшается по величине (Г — 3). Отсюда, из закона сохранения полной механической энергии получаем, что кинетическая энергия кометы при приближении к Солнцу, напротив, увеличивается (В — 2). Поскольку кинетическая энергия увеличивается, заключаем, что величина скорости движения кометы также увеличивается. Так как траектория движения — эллипс, а не прямая, скорость изменяется и по направлению (А — 4). Единственная сила, действующая на комету, — сила притяжения со стороны Солнца, поэтому второй закон Ньютона для кометы в проекции на радиальную ось приобретает вид Таким образом, при приближении к Солнцу ускорение кометы увеличивается по величине. Поскольку в любой момент времени ускорение кометы направлено к Солнцу, а комета двигается вокруг него, направление ускорения тоже изменяется (Б — 4).

Источник

Adblock
detector