Меню

Как делать снимки космоса

Техника съёмки ночного неба и объектов космоса

Привет, друзья! Хочу затронуть тему астрофотографии, которой увлёкся в последнее время. Под астрофото подразумеваются снимки такого плана:

  • съёмка ночных пейзажей; (широкоугольный объектив, длиннющая выдержка, низкое ISO)
  • звёзд и объектов солнечной системы (Луна + Планеты); (желательно большая апертура объектива, большое фокусное расстояние, большая светосила)
  • объектов далёкого космоса – Deep Sky Photo (галактики, туманности, звёздные скопления) (желательно большое фокусное расстояние, пригодится светосила и крайне необходимы тёмные условия съёмки, желательно вдали от городской засветки).

Для многих может показаться, что для наблюдения/съёмки за объектами ночного неба необходим телескоп, однако с этим можно поспорить, ведь весьма приличных и самое главное интересных результатов в качестве красивых фотографий можно достичь и при помощи обычной зеркалки. У меня самая дешёвая зеркальная камера, какую только нашёл Canon 1200D.

Фотографии космоса

Астрофотографии космоса, съёмка которых доступна Вам, если у вас есть зеркалка и штатив. Подойдёт даже стандартный KIT объектив 18 – 55, но об оборудовании позже. Несколько фотографий ночного неба, которые удалось сделать за последнее время.

Юпитер и 4 Галилеевых спутника

Звёздное скопление: Плеяды (7 сестёр)

Что и как нужно сделать, чтобы получить снимок

Опишу главные аспекты, которыми стоит руководствоваться при фотографировании ночного неба.

Необходимо определиться с объектом съёмки. (Расположение, величина, яркость). Здесь можно различить три типа фотографий:

1. Пейзажная съёмка

Ночной пейзаж со звёздным небом. Необходим объектив максимально широко охватывающий пространство перед вами. У стандартного объектива минимальное фокусное расстояние 18, которое говорит, что он довольно широкоугольный. В общем, чем меньше фокусное расстояние, тем приятнее получатся результаты.

1. Устанавливаем камеру на штатив и направляем камеру в сторону яркой звезды.

2. Открываем диафрагму на максимум или почти на максимум. Например, если максимально открытая диафрагма вашего объектива 3.5, то можно прикрыть её до 4 или 5.6. В пейзажной съёмке это делается для того, чтобы резкими были не только звёзды, но и ландшафт, деревья, архитектура, передний план. Но не забываем, мы снимаем ночью и каждый лучик от звёзд на вес золота, поэтому в какой-то мере можно и пожертвовать чёткостью и открыть диафрагму на максимум.

3. Фокусируемся, установив большое ISO (1600 или 3200). Переводим объектив в режим ручной фокусировки (MF). Для удобства можно перейти в режим LIVE, который будет отображать наблюдаемое на дисплее и увеличить картинку на нём при помощи кнопок зума на камере, чтобы попытаться хорошо сфокусировать по яркой звезде. Находим звезду и крутим кольцо фокуса, пока звезда не станет наиболее мелкой и чёткой и делаем пробный снимок.

4. Выдержка и ISO. После фокусировки подбираем выдержку опытным путём. Она должна быть довольно большой, но в тоже время некриминальной в том плане что, если она будет очень большой, то звёзды превратятся в треки и перестанут быть чёткими. Если вы хотите избежать этого, то уменьшайте выдержку до тех пор, пока звёзды не станут точками. После можно уменьшить ISO до минимально устраивающего вас значения, при котором в кадре будет достаточно хорошо освещено небо и звёзды. Большая чувствительность матрицы (ISO) приводит к появлению шумов, поэтому чем больше светосила объектива, чем меньше ISO и чем больше выдержка, тем меньше шума будет на вашем снимке.

2. Съёмка Луны и планет

В данном виде съёмки крайне желательно иметь объективы:

  1. с большим диаметром стекла;
  2. светосильные (малое значение диафрагмы);
  3. длиннофокусные от 200 и более.

Думаю этот вид съмки самый сложный, так как требует дорогостоящего оборудования и прямых рук. За счёт того, что происходит съёмка узкого угла неба, то объекты в кадре смещаются довольно быстро, поэтому необходимо использовать короткие выдежки, чтобы звёзды/планеты не были смазанными. Это ведёт к нехватке света, задиранию ISO, шуму. Поэтому придумана технология сложения группы снимков, в результате которой шум вычитается, а подлинная информация в кадре сохраняется. Как складывать фотографии неба в фотошопе для удаления шума можно посмотреть здесь. Этот метод больше подходит для пейзажной фотографии. А для сложения снимков планет, звёздных скопления, галактик, туманностей есть много специализированных программ. Мне по душе довольно простая – Deep Sky Stacker.

Читайте также:  Космос с космонавтом для изо

Как работать в ней я смотрел по довольно наглядному видео:

3. Объекты дальнего космоса (Deep Sky)

Ключевым аспектом для съёмки подобных фотографий является поиск тёмного неба, которое не засвечено городскими огнями. Объекты глубокого космоса хоть и довольно большие, но Очень тусклые, поэтому любая засветка просто перебьёт свет от галактики и на фотографии ничего не будет видно. Это справедливо и для фотографирования млечного пути ну и в принципе к любой другой астрофотографии. Чем темнее наблюдаемая область неба – тем лучше.

Deep Sky так же складывается при помощи программы Deep Sky Stacker или вручную в фотошопе, но это более трудозатратно.

Конечно лучше объективы с большим фокусным расстоянием. Мой “Юпитер 37A” с фокусным 135 мм меня очень радует. Даже на него можно много чего поснимать.

Не рекомендую

Не рекомендую снимать на объективы с малой апертурой (диаметром передней линзы). Всеми известный полтинник 50 mm f/1.8 хоть и очень светосильный, но у него очень небольшая апертура. Объекты получаются хоть и яркие, но размазанные. Даже на обычный китовый 18-55, на том же фокусном расстоянии 50 и темноте в 5.6 получаются гораздо детальные изображения. Правда, шумные, приходится компенсировать сложением множества снимков.

Ну вроде всё. Надеюсь, эта информация окажется полезной и интересной Вам.

Источник

Как ученые получают снимки, сделанные космическими аппаратами

Вы когда-нибудь задумывались, как астрономы принимают снимки, отправленные на землю космическими станциями, которые бороздят просторы Вселенной на расстоянии в миллионы или даже миллиарды (Вояджеры) километров от нашего дома? Давайте разберем это на примере аппарата OSIRIS-REx.

В 2016 году к астероиду Bennu был отправлен небольшой аппарат OSIRIS-REx. В 2019 году исследовательская станция должна будет приблизиться к космическому телу и зачерпнуть с его поверхности вещества, которые помогут ученым лучше понять процесс образования нашей Солнечной системы. Суть миссии аппарата OSIRIS-REx проста: прилететь к астероиду, собрать образцы грунта и отправить их обратно на Землю. В своих лабораториях специалисты будут изучать “первозданное” углеродистое вещество, которое могло сохраниться на Bennu со времен рождения Солнечной системы и которое, скорее всего, является “строительным материалом” живой материи. Возможно, образцы с астероида помогут нам стать на шаг ближе к разгадке тайны появления жизни на нашей планете.

По мере приближения к объекту, аппарат будет фотографировать астероид и передавать на Землю снимки, выполненные камерами OCAMS, которые разрабатывались инженерами NASA в стенах Аризонского университета. OCAMS — это блок камер, состоящий из трех приборов: PolyCam (предназначена для съемки с далекого расстояния), MapCam (будет снимать выбранный район сбора проб в высоком разрешении) и SamCam (будет снимать процесс забора проб).

Прежде чем мы увидим на экранах своих компьютеров или телефонов фотографии, присланные OSIRIS-REx, ученым необходимо будет выполнить три важных шага: осуществить сам процесс съемки Bennu, передать информацию с зонда на Землю и принять данные с последующим получением изображений.

Шаг №1 — съемка астероида

Съемка — это работа, требующая синхронных действий между OCAMS и компьютерной системой космического аппарата. Солнечный свет, отражаясь от поверхности астероида, проходит через специальный объектив камер OCAMS, потом через встроенный фильтр, а затем “падает” на электронный чип, называемый прибором с зарядовой связью, или CCD-матрицей.

Поверхность CCD-матрицы OCAMS разделена на 1024 параллельные линии, каждая из которых дополнительно “разбита” на 1024 светочувствительных элемента, таким образом размер матрицы составляет 1024 на 1024, или 1 048 576 пикселей (пиксели формируют объекты, изображенные на снимке). Получается, что OCAMS имеет разрешение чуть больше 1-го мегапикселя (в 1 мегапикселе — 1 000 000 пикселей).

Каждый пиксель может передавать только один цвет, это может быть как сам цвет, так и яркость или вообще прозрачность. Цвет каждого пикселя кодируется электронной камерой в бинарный код, который обозначается цифрами 0 и 1 (составленное двоичное число называют битами), а затем этот код передается на центральный компьютер космического корабля. Компьютер ставит его в очередь, чтобы при первой удобной возможности (во время специального “окна”) передать на Землю.

Читайте также:  Лампа накаливания космос lksmst55cl95e27v2

Шаг №2 — передача изображения на Землю

При помощи технических систем, представляющих собой “канал передачи данных”, на Землю передается битовый поток информации в виде сигнала. Вначале информацию принимает ретранслятор для связи в глубоком космосе Small Deep Space Transponders, установленный на некоторых космических зондах, расположенных вблизи нашей планеты, затем ретранслятор перенаправляет данные на 100-ваттный усилитель Travelling Wave Tube Amplifiers, который используется для усиления радиочастотных (RF) сигналов в микроволновом диапазоне и в несколько раз усиливает мощность сигнала для последующей его передачи одной из трех бортовых антенн.

Скорость передачи данных на Землю зависит от того, какую именно из трех антенн применяют ученые для связи с нашей планетой. Самые высокие скорости получаются, когда специалисты используют для приема и последующей передачи сигнала 2-х метровую высокочастотную антенну High-Gain Antenna (HGA). Также они могут использовать антенну средней мощности Medium Gain Antenna (MGA) и низкочастотную Low Gain Antenna (LGA). Антенна HGA обеспечивает максимальную скорость передачи данных на Землю (914 килобит в секунду), LGA имеет довольно слабую мощность, а скорость передачи оставляет желать лучшего. Из-за этого она в основном используется для приема информации, а не для ее передачи. MGA представляет собой нечто вроде “золотой середины” — она обеспечивает умеренную скорость передачи потока данных.

Шаг №3 — получение данных

Сигнал на Земле принимает одна из антенн NASA Deep Space Network. После чего ученые “собирают” код на компьютерах и получают изображение.

Deep Space Network (DSN) — международная сеть радиотелескопов и средств связи, используемых для радиоастрономического исследования Солнечной системы и Вселенной, для управления межпланетными космическими аппаратами и приема космических сигналов. DSN представляет собой антенную систему дальней космической связи, состоящую из трех комплексов, расположенных в разных точках земного шара, которые удалены друг от друга примерно на 120 градусов долготы:

1) Комплекс дальней космической связи Голдстоун. Находится в пустыне Мохаве в южной Калифорнии, США, в 60 км к северу от Барстоу.

2) Мадридский комплекс глубокой космической связи. Расположен в 60 км к западу от Мадрида в в Робледо-де-Чавела.

3) Комплекс дальней космической связи в Канберре. Его можно найти в 40 километрах к юго-западу от Канберры, в долине реки Меррамбиджи на краю заповедника Тидбинбилла.

Такое стратегическое размещение позволяет постоянно наблюдать за космическими аппаратами по мере вращения Земли (частично перекрывать зоны действия друг друга). В поле зрения основных антенн DSN могут попадать зонды либо спутники-ретрансляторы сигналов, находящиеся на расстоянии до 55 миллионов км от поверхности Земли.

В каждом из трех комплексов имеется по одной антенне с диаметром зеркал 70 метров, по несколько антенн с диаметром зеркал 34 метра, антенны с диаметром зеркал 26 метров, а также по паре ультрачувствительных приемников и мощных передатчиков. Основную нагрузку по управлению космическими аппаратами несут антенны с диаметром зеркал 34 метра, так как они являются более новыми и эффективными.

Нашли ошибку? Пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Как сфотографировать космос, фотографии космоса

Как же все-таки можно обычному фотографу сфотографировать космос, получить красивые фотографии космоса и удивлять ими всех своих друзей и других фотографов?

Ну что любители экзотической фотографии, теперь вы можете самостоятельно и без какой-либо помощи сфотографировать космос и получить удивительные фотографии космоса со своего фотоаппарата.

Если вы еще не умеете фотографировать и далеки от процесса фотографии, то читаем обязательно нашу статью о том как научиться фотографировать. Если не знаете, как сфотографировать звездное небо, то читаем статью о фотографии звездного неба.

Эта статья написана из материала, найденного на просторах интернета, этот метод фотографирования космоса так меня заинтересовал, что я не смог не поделиться со своими читателями найденным материалом и фотографиями космоса.

Читайте также:  Космос с землей hd 720

Ну что, рассмотрим по подробнее как можно самостоятельно сфотографировать космос на свой обычный фотоаппарат и какие небольшие вложения на дополнительное оборудование вам потребуются, чтобы получить удивительные фотографии космоса.

Что нужно для фотографирования космоса?

  • Интерес к фотографии и ко всему удивительному в мире фотографии космоса
  • Фотоаппарат с функцией таймера спуска затвора
  • GPS передатчик
  • Балон с газом и воздушный шар
  • Ноутбук с выходом в интернет
  • Термокейс для того чтобы фотоаппарат не замерз

Ну вот, вроде и все. Из списка уже наверное понятно как сфотографировать космос, а более подробнее вы сможете не только прочитать в моей статье о фотографии космоса, но и увидеть видео как сфотографировать космос, в конце статьи.

Процесс фотографирования земли из космоса

И так, берем фотокамеру и хорошо укутываем в термокейс, предварительно запрограммировав ваш фотоаппарат, чтобы он делал фотографию каждые пять минут. Укутываем его для того, чтобы он не замерз в космосе.

Надуваем шар с гелием и прицепляем наш кейс с фотоаппаратом к шару. Отпускаем шар, следим через интернет за сигналом GPS передатчика и ждем когда шар лопнет, а фотоаппарат со снимками земли из космоса приземлиться обратно к нам на нашу родную Землю.

Весь процесс полета и фотографирования космоса занимает около двух часов, за это время шар может подняться на высоту 25 километров, далее шар лопается от перегрузки давления и разряженной атмосферы космоса. После того как шар приземлится, отслеживаем его место падения через интернет на планшете или ноутбуке и вперед к полученным фотографиям космоса, сделанным с помощью удивительного метода съемки, придуманного парнем по имени Роберт Гариссон из Америки.

Фотографии космоса

Вот фотографии космоса, которые получились у парня из Америки. Собственно стоит восхищаться, что человек не сидит на месте и познает все интересное в мире фотографии. Фотографии космоса конечно удивляют и заставляют задуматься о том, что много еще чего не раскрыто в человеческих возможностях как на земле так и в космосе.

Сфотографировав космос, Роберт Гариссон сразу выложил эти фотографии в интернет, они мгновенно облетели весь мир и удивили даже организацию NASA, которая всерьез заинтересовалась процессом фотографирования космоса таким способом и полученными фотографиями.

Видео о том как сфотографировать космос своими руками

Видео было сделано совсем другой командой, но весь процесс фотографирования космоса своими руками, описанный в этой статье, ни чем не отличается от того что придумал парень из Америки, смотрим и удивляемся как прекрасен космос и как он доступен обычному человеку.


Ну вот, мы раскрыли секрет, как можно самому и с помощью небольших затрат сфотографировать космос, получить удивительные фотографии космоса на свой фотоаппарат. Все можно сделать самому, главное иметь желание и цель в жизни. Путешествуйте вместе с travel-picture.ru и мир к вам станет ближе.

Как сэкономить на поездке? Рабочие лайфхаки!

Данные советы помогут спланировать самостоятельный отдых на курортах зимой или летом дешевле:

  • Лучшие цены на отели рекомендуем искать на ROOMGURU. Поисковик ищет среди всех отельных баз интернета, даже у таких гигантов как Booking, и сравнивает цены. Если вы любитель пользоваться смартфоном, то приложение по ПО ПОИСКУ ЖИЛЬЯ просто необходимо. Очень удобно по прилету открыть варианты и тут же забронировать.
  • Выгодно застраховать свое здоровье и жизнь в путешествии поможет сервис TRIPINSURANCE, поисковик показывает результаты от всех крупных страховых компаний. Вам остается выбрать лишь самый выгодный вариант, но на здоровье советуем не экономить!
  • Авиабилеты? Опытным путем советуем пользоваться AVIASALES, он и по сей день является поисковиком №1 среди самостоятельных путешественников.

Меня зовут Сергей и я работаю гидом по разным городам Европы, Азии, Восточной части России, по совместительству работаю менеджером в крупной турфирме. За время путешествий я испытал массу эмоций, узнал полезную информацию об отдыхе и ценах, увидел уникальные места, о которых спешу поделиться на страницах своего блога о туризме.

Источник