Меню

Как доказать расширение вселенной

Можно ли разгадать тайну расширения Вселенной?

Немногим больше ста лет назад никто на нашей планете не знал, что Вселенная расширяется. Но несмотря на все беды и несчастья, которые ХХ век принес человечеству, именно это столетие ознаменовано научно-техническим прогрессом. За невероятно короткий отрезок времени мы узнали о мире и Вселенной больше, чем когда-либо. Идею о том, что наша Вселенная расширяется на протяжении последних 13,8 миллиардов лет впервые предложил бельгийский физик Жорж Леметр в 1927 году. Два года спустя американскому астроному Эдвину Хабблу удалось подтвердить эту гипотезу. Он установил, что каждая галактика удаляется от нас и чем она дальше, тем быстрее это происходит. Сегодня существует множество способов, с помощью которых ученые могут понять, как быстро наша Вселенная увеличивается в размерах. Вот только цифры, которые исследователи получают в процессе измерения, каждый раз получаются разными. Но почему?

C момента своего рождения наша Вселенная расширяется со все возрастающей скоростью.

Самая большая загадка Вселенной

Как мы знаем сегодня, существует тесная связь между расстоянием до галактики и тем, как быстро она удаляется. Так, скажем, галактика на расстоянии 1 мегапарсек от нашей планеты (один мегапарсек приблизительно равен 3,3 млн световых лет) удаляется со скоростью 70 километров в секунду. А та галактика, что находится несколько дальше, на расстоянии двух мегапарсек, движется в два раза быстрее (140 км/сек).

Интересно и то, что сегодня существует два основных подхода для определения возраста Вселенной или, по-научному, постоянной Хаббла. Разница между этими двумя группами заключается в том, что один набор методов рассматривает относительно близкие объекты во Вселенной, а другой – очень отдаленные. Однако каким бы способом не воспользовались ученые, результаты каждый раз получаются разные. Выходит, либо мы делаем что-то не так, либо где-то далеко во Вселенной происходит нечто абсолютно неведомое.

Исходя из того, что быстрее всего от Земли отдаляются самые далекие галактики, ученые сделали вывод о том, что когда-то все галактики находились в одной точке – по времени это событие совпадает только с Большым взрывом.

В исследовании, недавно опубликованном на сервере препринтов airxiv.org, астрономы, изучая близлежащие галактики, использовали умный метод измерения расширения Вселенной под названием флуктуации поверхностной яркости (surface brightness fluctuations). Это причудливое название, но оно включает в себя идею, которая на самом деле интуитивно понятна.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Представьте, что вы стоите на опушке леса, прямо перед деревом. Так как вы стоите очень близко, вы видите только одно дерево в своем поле зрения. Но стоит отойти немного назад, как перед глазами возникнет больше деревьев. И чем дальше вы будете отходить, тем больше деревьев будете видеть. Примерно то же самое происходит с галактиками, которые ученые наблюдают с помощью телескопов, только гораздо сложнее.

Как узнать скорость расширения Вселенной?

Чтобы получить хорошие статистические данные, астрономы наблюдают за галактиками, расположенными довольно близко к Земле, примерно на расстоянии 300 миллионов световых лет и ближе. Однако наблюдая за галактиками, необходимо учитывать пыль, фоновые галактики и звездные скопления, которые видно на полученных с помощью телескопа изображениях.

Вселенная хитра. Начиная с 1990-х годов астрономы увидели, что очень далекие взрывающиеся звезды всегда были расположены дальше, чем показывали простые измерения. Это привело их к мысли, что сейчас Вселенная расширяется быстрее, чем раньше, что, в свою очередь, привело к открытию темной энергии — таинственной силы, ускоряющей Вселенское расширение.

На сегодняшний день время Большого взрыва, породившего Вселенную, ученые оценивают с помощью компьютерного моделирования.

Как пишут авторы научной работы, когда мы смотрим на очень далекие объекты, мы видим их такими, какими они были в прошлом, когда Вселенная была моложе. Если скорость расширения Вселенной тогда была иной (скажем, 12-13, 8 миллиарда лет назад), чем сейчас (менее миллиарда лет назад), мы можем получить два разных значения для постоянной Хаббла. Или, быть может, разные части Вселенной расширяются с разной скоростью?

Но если скорость расширения изменилась, значит возраст нашей Вселенной совсем не такой, как мы думаем (ученые используют скорость расширения Вселенной, чтобы определить ее возраст). Это, в свою очередь, означает, что у Вселенной другой размер, а значит время, необходимое для того, чтобы что-то произошло, тоже будет другим.

«Если следовать этой цепочке рассуждений, то в конечном итоге окажется, что физические процессы, происходившие в ранней Вселенной, происходили в разное время. Еще, возможно, были задействованы другие процессы, влияющие на скорость расширения. В общем выходит какой-то бардак. Из чего следует, что либо мы недостаточно хорошо понимаем, как ведет себя Вселенная, либо неправильно ее измеряем», – отмечают авторы исследования.

В любом случае постоянная Хаббла является предметом горячих споров в астрономическом сообществе. Так как новое исследование добавило еще больше вопросов, борьба с неопределенностью будет долгой. Когда-нибудь, конечно, наше понимание космоса изменится. Но когда это произойдет, космологам придется искать что-то еще, о чем можно будет поспорить. Что они обязательно сделают.

Читайте также:  Как известно эдвин хаббл установил что вселенная расширяется выберите 2 верных утверждения

Источник

Как и куда расширяется вселенная?

Я думаю многие слышали о том, что Вселенная расширяется. У моих читателей возникает множество вопросов связанных с этим. В этой статье я постарался ответить на наиболее типичные из них.

Как работает расширение вселенной?

Когда мы смотрим на отдаленные объекты, мы можем заметить, что они отдаляются от нас, при этом чем дальше от нас находится объект, тем быстрее он отдаляется. К примеру объекты находящиеся от нас на расстоянии 13.8 миллиардов световых лет ( сфера Хаббла ) отдаляются от нас со скоростью света, а объекты находящиеся еще дальше – отдаляются быстрее скорости света!

Казалось бы происходит нарушение теории относительности, которая запрещает сверхсветовое движение, но на самом деле это не так. Так отдаленные галактики отдаляются от нас не за счет собственного движения, а за счет того, что между нами и ними пространство расширяется настолько быстро, что для расстояние увеличивается быстрее скорости света.

Почему отдаленные галактики удаляются быстрее?

Потому, что пространство расширяется везде и повсеместно равномерно во всех точках. К примеру если во вселенной каждый метр пространства увеличится на 1 сантиметр за 1 секунду, то тогда объекты расположенные на расстоянии 1 километр друг от друга отдалятся за 1 секунду друг от друга на 10 метров. А на расстоянии 100 километров — на 1000 метров. А на расстоянии 1000 километров — на 10 000 метров и так далее — чем больше расстояние между объектами, тем больше пространства между ними возникает за единицу времени.

Почему все галактики удаляется от нас? Значит ли это, что мы находимся в центре расширения? В центре вселенной? Нет, не значит. Так как пространство расширяется повсеместно и равномерно то какую бы галактику вы не выбрали, как точку обзора, из нее все будет выглядеть так, как будто это она находится в центре расширения, но по сути никакого центра расширения просто нет.

На расстоянии примерно 46.5 миллиардов световых лет находится граница наблюдаемой вселенной. Все что находится за ней мы никогда не сможем увидеть. Просто потому, что фотоны испущенные объектами находящимися за границей наблюдаемой вселенной никогда не достигнут нас — пространство между ними и нами будет возникать быстрее, чем фотоны будут успевать преодолевать его. Это расстояние еще называют горизонтом частиц .

Куда расширяется вселенная?

Теперь возникает следующий вопрос – куда же расширяется вселенная? Ответ на него донельзя прозаичен – никуда. Все дело в том, что вселенная бесконечна и не имеет границ. Более того вселенная всегда была бесконечна, даже в момент Большого Взрыва. Когда физик или астроном говорит, что в момент большого взрыва вселенная была сжата до микроскопического размера речь идет о размерах наблюдаемой вселенной, а не всей вселенной.

Источник

Откуда мы знаем, что Вселенная расширяется?

Сама идея о том, что Вселенная расширяется — довольно новая. Хотя если поразмыслить логически люди могли додуматься до нее уже в 17-18 веках — сразу после открытия закона Всемирного тяготения. Ведь действительно — если все тела притягиваются друг к другу с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояний между ними, то с течением времени вся материя во вселенной сбилась бы в одну «кучу». Однако ничего похожего мы не наблюдаем. Это возможно в двух случаях а) закон Всемирного тяготения неверен б) расстояние между массами увеличивается быстрее, чем сила тяготения успевает его уменьшить.

Однако до первой половины 20-го века никто до этого не додумался. Даже великий Эйнштейн не представлял себе возможности расширяющейся вселенной, хотя она и напрямую следовала из его теории относительности. Первым понял, что вселенная расширяется великий американский астроном Эдвин Хаббл.

Открытие других галактик

До Хаббла считалось, что вся вселенная — это галактика Млечный Путь. Все началось с того, что Хабблу удалось измерить расстояния до далеких звезд в туманности Андромеды и оказалось, что они находятся слишком далеко, чтобы быть частью Млечного Пути.

Читайте также:  Как образуется вода во вселенной

Многие не хотели принимать его всерьез, ведь он был очень молод и не имел авторитета, но его аргументы были неоспоримы, а математические выкладки точны, и научное сообщество приняло эти результаты, совершившие впоследствии переворот в космологии. В следующие годы Хаббл открыл несколько десятков галактик за пределами Млечного Пути.

Красное и синее смещение

Общеизвестно, что свет обладает свойствами как электромагнитных колебаний, так и потока частиц. Видимый нами свет зависит от длины волны световых электромагнитных колебаний. По одну сторону спектра находятся «красные» волны — длинноволновые колебания, а по другую — «сине-фиолетовые» волны — коротковолновые.

Источник

Расширение Вселенной: как его открывали

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.

Четверть века спустя эту возможность по-новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера-Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.

В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150 — 1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923—1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».

Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

Читайте также:  Галактика вселенная космос последовательность

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.
Хаббл не знал, как они связаны друг с другом, но что об этом говорит сегодняшняя наука?
Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.
А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V – вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить только в том случае, если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, что законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.
Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна – де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А вот если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.
Зависимость скорости далеких объектов от красного смещения согласно СТО, ОТО (зависит от модели и времени, кривая показывает настоящее время и текущую модель). При малых смещениях зависимость линейная.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по-ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).

Источник

Adblock
detector