Меню

Как долететь до луны без ракеты

Как долго добираться до Луны?

Ричард Бренсон в 2008 году рассказал о своем видении будущего компании Virgin Galactic. Он собирался не только вывести туристов на земную орбиту, но и построить космические отели и создавать короткие путешествия на спутник. Но поездка должна занимать мало времени. Так как долго добираться до Луны?

На Луне побывали не только космические аппараты, но и астронавты. У некоторых ушло много времени, а вот другие сделали все быстро. Давайте детальнее взглянем на миссии, полет к Луне и причины их задержки или скорости.

Как долго добираться до Луны

Наиболее медленной стала передовая технология. Это был зонд ЕКА SMART-1, отправленный в 2003 году. Он использовал революционный ионный двигатель. Поездка заняла год, месяц и две недели!

Миссия SMART-1, основанная на ионном двигателе

Да, это долго, но зато аппарат максимально сэкономил на расходе топлива. Для полета использовали всего 82 кг ксенонового топлива. И это крайне странная миссия, ведь обычно на путешествие уходит всего пара дней.

Китайская Ченьэ-1 стартовала в 2007 году и прибыла через 5 дней. Второй их аппарат сократил время полета до 4 дней и 16 часов. В 2013 году стартовал третий – 4 дня, 12 часов и 23 минуты.

Посадочная площадка Чаньэ-3 и лунная поверхность

Первой беспилотной миссией стал советский зонд Луна-1 в 1959 году. Он проехал 36 часов, но пролетел мимо на дистанции в несколько тысяч км. Средняя скорость – 10500 км/ч.

Сколько же лететь до Луны по времени с экипажем? Единственными пилотируемыми миссиями стали участники программы Аполлон. Первой была Аполлон-11 с Нилом Армстронгом и Баззом Олдрином. Они перемещались 51 час и 49 минут. Свои знаменитые слова Нил произнес на 109-м часу миссии. Они пробыли на спутнике 2 дня, 22 часа и 56 минут. Это была сама быстрая поездка на спутник с астронавтами.

Земля, запечатленная экипажем Аполлона-11 на Луне

Конечно, быстрее всех перемещался известный аппарат Новые Горизонты, отправившийся к Плутону. Он ускорился на ракете Атлант V до скорости в 16.26 км/с. До Луны добрался всего за 8 часов и 35 минут. И это удивительно, ведь он не замедлился на орбите, а наоборот ускорялся дальше.

После него испытания проводили с миссиями Ориона и системой SLS.

Художественная интерпретация корабля Новые Горизонты

Ракета Ориона EFT-1 разогналась до 8.9 км/с и могла бы добраться к Луне за 12 часов. Можно еще подкорректировать вес, но это неплохой вариант для туристических перевозок. Если мы все же доживем до такой возможности, то сможем рассмотреть две возможности. Это будут медленные поездки с детальным обзором пространства или же стремительный вылет и доставка к цели. Теперь вы знаете, сколько лететь до Луны.

Источник

Как долететь до луны без ракеты

  • Главная
  • Новости
  • Фото/Видео
    • Фото
    • Видео
  • BLOG
    • Авиация и кино
    • Военная авиация
    • Авиация и музыка
    • Авиация и литература
    • Авторские статьи
    • Стюардессы
    • Полезная информация
    • Авиа юмор
    • Статьи
    • Календарь
    • Обзоры полетов
    • Вероятность катастрофы
    • Онлайн табло
    • Расчет расстояния
    • Биржа акций
    • Сравнение авиатехники
    • Разговоры в кабине пилотов
    • Узнать самолет по номеру рейса
  • Энциклопедия
    • Авиация и кино
    • Военная авиация
    • Гражданская авиация
    • Авиация и литература
    • Полезная информация
    • Вертолеты
    • Летчики
    • Заводы
    • Учебные заведения
    • Униформа
    • Авиа игры
    • Агрегаты и узлы авиа техники
    • Авиакатастрофы
    • Арсенал
    • Боевые самолеты
    • Беспилотные л.а.
  • Статьи
  • Самолёты
  • Аэропорты
  • Вертолеты
  • Авиакомпании
  • Авиабилеты

Вы здесь

Космос с давних времен интересовал человечество. Таинственный, неизведанный и далекий: возможности космических путешествий, а также открытие новых далеких миров всегда волновали человека. Ближайшим небесным телом к Земле является Луна, поэтому нет ничего удивительного в том, что еще на начальном этапе освоения космоса человек пытался попасть именно на это небесное тело. Ниже мы расскажем вам, сколько времени лететь до Луны и затронем такую интересную тему, как ее основание.

История освоения космоса

Первым отправить человека в космос смог Советский Союз, обогнав в этом плане США. В ответ штаты стали работать над развитием собственной лунной программы, которая подразумевает изначально орбитальные облеты спутника и в дальнейшем и высадку людей на Луну.

Сколько денег ушло на эту программу рассчитать невозможно. Эксперты отмечают, что в реализация этой программы в сопоставимых ценах оценивается в 500 млрд $. НАСА специально для этих полетов разработало ракету Сатурн 5, которая могла добраться до Луны за три-четыре дня. На те времена это была самая мощная ракета, которая способна покорять большие расстояние в несколько сотен тысяч километров от Земли до нашего спутника в максимально сжатый срок.

Первый человек, который ступил на поверхность Луны – американец Нил Армстронг. В 1969 году в составе миссии Аполлон 11 сумел посадить лунный модуль недалеко от моря Спокойствия. В дальнейшем было выполнено несколько американских пилотируемых миссий. Около десятка космонавтов побывали на Луне, которые провели многие исследования и смогли привести на Земле больше 20 кг лунного грунта.

Через несколько лет интерес к Луне пропал, и было решено свернуть дорогую программу полетов. Подобное объясняется дороговизной пилотируемых самолетов, поэтому в Советском Союзе и США решили сконцентрировать свое внимание на строительстве орбитальных станций на орбите земли и околоземном исследовании космоса. Летать на орбиту Земли было дешевле и проще, а создание орбитальной станции позволило сделать серьезный толчок в освоении космоса.

Однако интерес к далеким полетам пропал практически на 30 лет. Только сегодня, когда человечество задумалось о колонизации и исследовании Марса, к нашему спутнику вновь появился интерес. Луну использовали в качестве перевалочной базы для межпланетных перелетах на дальних расстояниях. Человечество сделало серьезный шаг вперед в сфере ракетостроения, что позволило не просто удешевить такие полеты, но и сделать их безопаснее и быстрее.

История покорения:

  • Советский исследовательский аппарат первый раз достиг Луны – 1959 год.
  • Первая успешная посадка на Луне – 1966 год.
  • Высадка экспедиции Нила Армстронга – 1969 год.
  • Последний на сегодня полет человека на Луну – 1972 год.

Расстояние до Луны

Луна вращается вокруг Земли по немного приплюснутой эллиптической орбите. По этой причине расстояние от Земли до спутника может варьироваться от 355 до 404 тыс. км. Многим из нас тяжело представить такие расстояние. Сколько понадобится времени, чтобы преодолеть этот путь?

  • На автомобиле со средней скоростью около 100 км в час, можно было бы добраться до спутника Земли за 160 дней.
  • Если идти пешком, то понадобилось бы девять лет непрерывной ходьбы.
  • На самолете, который может разогнаться до 800 километров в час, лететь пришлось бы около двадцати дней.
  • На космическом корабле Аполлон, скорость которого в несколько тысяч километров в час, можно было добраться до Луны за 72 часа.
  • Современный космический аппарат может долететь до луны за 9 часов.

Полет на Луну на современных ракетах, теоретически не представляет особой сложности, несмотря на большое расстояние в 380-400 тыс. км. Не нужно подбирать время для старта ракетоносителя, так как максимальное и минимальное расстояние до Луны не столь велико. Продолжительность таких перелетов – всего лишь несколько дней, что позволяет разрешить проблемы радиации в космосе, которая при вспышках на Солнце только увеличивается.

Тяжелые современные ракетоносители, которые создавались специально для полета на Марс, также могли бы использоваться для перелетов до Луны и в обратную сторону. В этом случае полет на расстоянии в 400 тыс. км занял бы примерно 15-17 часов только в одну сторону. Единственная тонкость подобных полетов заключалась в том, что нужно изначально обустроить лунную базу, где бы приземлялись спускаемые модули, что и позволило бы осуществлять исследование Луны и даже жить на базе на протяжении определенного времени.

Читайте также:  Календарь луны растущая или убывающая 2021 март

Перспективы исследовательских миссий и дальних полетов

Споры о целесообразности исследования спутника Земли и полетов на него не утихают и по сегодняшний день. Если изначально на первых этапах освоения и покорения космоса к таким полетам был серьезный интерес, даже несмотря на большое расстояние, то со временем, стало понятно, что обустройство базы на Луне – бесперспективно. Спутник не имел каких-то полезных ископаемых, что и делало дорогие полеты на Луну бессмысленными.

Но сегодня, когда человечество задумалось о полетах на Марс и колонизации Красной планеты, на некоторое время Луна смогла бы стать перевалочной базой, что существенно упростило бы дальние межпланетные перелеты. Фактически наш спутник может стать испытательным полигоном, что и позволит в будущем заселять Марс и прочие пригодные для жизни планеты.

Параллельно с развитием технологий полеты к естественному спутнику Земли существенно упростились, а обустройство на нем орбитальной базы уже не кажется чем-то нереальным. Лететь до Луны стало намного безопаснее и проще. Подобные перелеты в ближайшие 10 лет, несмотря на расстояние до Луны практически в 400 тыс. километров, станут обыденным делом, а человек вновь вернутся к исследованию дальнего радиуса Земли.

Источник

Полёт на Луну – это «морковка» для отвлечения внимания от реальных проблем

Новая лунная гонка. Как долететь до Луны на «попутках»

Автор – Алексей Анпилогов

В связи с новой попыткой человечества «достать до Луны», мне вспоминается старый анекдот касательно петуха, который гонялся вокруг деревенской хаты за упрямой курицей-недотрогой, по ходу погони думая о том, что «коль уж не догоню, так уж точно согреюсь!», так как действие анекдота происходило поздней осенью.

Что ни говорите, а нынешняя ситуация в космонавтике отнюдь не напоминает знойное время 1960-х, когда, как оказалось, мы жили в ситуации настоящего «мира космического полудня». О причинах той безумной гонки и о её неизбежном окончании я уже написал в двух прошлых частях рассказа о новом лунном забеге, поэтому повторяться не буду.

В этой части сюжета я расскажу о том, что сейчас реально могут сделать Россия, США и Китай в деле создания новых ракетных и космических комплексов, которые снова смогут достичь орбиты и поверхности Луны.

1. США. «Давайте возьмём молоток побольше. »

Подход американцев к новому старту к Луне в чём-то похож на их концепцию 1960-х годов, когда они решились на создание сверхтяжёлой ракеты-носителя «Сатурн V», позволившей им уйти от потребности собирать что-либо на орбите или использовать многопусковую схему.

Нынешняя реинкарнация сверхтяжёлой американской ракеты называется SLS и я уже описывал существующий подход к её созданию, который заключается в максимальном использовании предыдущего задела из проектов «Дельта IV», «Спейс Шаттл» и даже, возможно, всё того же «Сатурна V».

Второй успешный тест нового пятисекционного стартового ускорителя ракеты SLS прошёл 28 июня 2016 года

Однако, даже адаптация предыдущего технологического и конструкционного задела отнюдь не идёт так гладко, как это представлялось изначально, на старте программы SLS в 2011 году.

После пяти лет предварительных работ по программе, кроме несомненных технических успехов в деле создания отдельных компонентов, выявились и откровенные провалы в деле создания новых ракетных ступеней, даже из существующего задела.

Так, оригинальный план 2012 года по развитию программы SLS предполагал, что уже в 2015-м году НАСА сможет сделать выбор по так называемому проекту «усовершенствованного стартового ускорителя», который бы смог уйти от унаследованных от «Шаттла» ограничений на тягу первой, разгонной ступени SLS – ускорителей SRB. По сути дела, нынешние ускорители, которые испытывают для SLS – это те же ускорители «Шаттла», к которым приставили дополнительную, пятую твёрдотопливную секцию.

Все секции ускорителей SLS и системы «Спейс Шаттл», называющихся SRB, имеют одинаковый размер. Просто у SLS их на одну больше. На фотографии – транспортировка секций ускорителей по железной дороге.

Такое половинчатое решение не позволяет сколь-либо значительно модифицировать ускоритель «Шаттла» и поднять его стартовую тягу: фактически речь идёт лишь о том, что дополнительная, пятая секция обеспечивает ускорителю только дополнительное время работы, что не совсем соответствует требованиям, которые стоят перед системой SLS.

В силу этого, первый вариант SLS (Block I), который использует SRB, в начальных планах НАСА должен был быть заменён на один из проектов «усовершенствованного стартового ускорителя» как можно быстрее, что тут же поднимало грузоподъёмность системы SLS с 70 до 105 тонн на низкой околоземной орбите (НОО).

В качестве замены для SRB планировалось три варианта «усовершенствованного стартового ускорителя»: компания «Аэроджет» предлагала ускоритель на керосиново-кислородном двигателе AJ1E6 закрытого цикла (который базировался на идеях, взятых с РД-180 производства РКК «Энергия»). Компания «Рокетдайн» считала, что сможет построить свой керосиново-кислородный ускоритель первой ступени Pyrios на доработанном F-1 открытого цикла с «Сатурна V», а создатель ускорителя SRB, компания ATK, готова была предоставить на конкурс новый твёрдотопливый ускоритель Dark Knight («Чёрный рыцарь»).

Однако, уже в середине 2015-го года стало понятно, что ни Pyrios от «Рокетдайна», ни проект «Аэроджета», ни даже модернизация SRB от ATK не смогут соответствовать всем требованиям НАСА, в результате чего было объявлено, что на модифицированном SRB ракета будет летать вплоть до конца 2020-х годов, что сразу же ограничило её максимальную грузоподъёмность с учётом перспективных доработок третьей ступени, до 100 тонн на НОО.

Good buy, Dark Knight. Ну и другие проекты ускорителей – тоже

В целом же, из общей стоимости разработки и постройки программы SLS в 35 млрд. долларов США, по состоянию на конец 2015-го года было уже потрачено 7,7 млрд. долларов (с 2011 года), однако программа по-прежнему ещё не вышла из этапа стендовых испытаний.

Более того, ситуацию с основным блоком ракеты, второй ступенью (т.н. core stage) также пока что нельзя назвать радужной: пока что она состоит лишь из отдельных частей, мало связанных между собой в металле, в силу чего начальный срок первого запуска в 2017-м году, который был объявлен на старте программы в 2011-м, сегодня уже выглядит не то что, сверхоптимистичным, но уже и несбыточным.

Состояние частей core stage ракеты SLS на середину сентября 2016 года

Учитывая такие проволочки и изменения в плане создания носителя SLS, можно сомневаться и в сроках и осуществимости в полной мере изначальных прикидок по новой американской лунной программе и другим программам исследования дальнего космоса.

Всё дело в том, что доступная на лунной траектории полезная нагрузка для ракеты SLS в варианте Block I с ускорителями SRB составляет лишь 28 тонн, в то время, как ожидания для перспективных ускорителей были гораздо выше – до 48 тонн на лунной траектории.

Один из проектов НАСА, который в перспективе использовал более высокую грузоподъёмность ракеты SLS с усовершенствованными ускорителями – аппарат Deep Space Habitat, который должен был обеспечить 60-ти и 500-дневные исследовательские миссии на высокой околоземной орбите, вне поясов Ван Аллена

Такое ограничение грузоподъёмности сразу же ставит под вопрос массу миссий, на которые рассчитывали SLS в вариантах Block IB и Block 2, с новыми ускорителями. В такие миссии входил и проект Deep Space Habitat, который должен был в реальности проверить эффекты влияния межпланетного пространства на человеческий организм в условиях отсутствия защиты от магнитного поля Земли, и проект Nautilus X, в рамках которого в НАСА хотели отработать создание космической станции с тороидальным вращающимся сегментом, который мог бы реализовать идею замены силы тяжести центробежным ускорением и рассматривали использование надувных модулей В330, которые сейчас проектирует компания «Бигелоу Аэроспейс».

Читайте также:  Говорит звезда с луною

Марсианин, подожди. Мы не готовы тебя спасать. Визуализация пока что недостижимого проекта Nautilus X

Кроме того, 48 тонн на лунной траектории позволяли НАСА, особо не напрягаясь, повторять все технические и конструкционные решения программы «Аполлон», только уже на новом технологическом уровне.

Однако, ограничение в 28 тонн на лунной траектории и пробуксовка всей программы SLS вносят в американскую лунную программу свои коррективы – в силу чего сегодня можно наблюдать массу заявлений и концепций, часто противоречащих друг другу, но так или иначе учитывающих прискорбный факт: пока что американцам можно рассчитывать лишь на 50% грузоподъёмности старичка «Сатурна V» на НОО (70 тонн вместо 140 тонн), да и этот результат вполне может быть доступен только в самом конце 2010-х годов.

Пока же, судя по всему, лунная программа США будет как-то учитывать тот прискорбный факт, что существующий SLS, хоть и является самым мощным из существующих и разрабатываемых носителей, повторить даже схему полёта «Аполлона» не в силах.

Недостижимый теперь план: так летели к Луне «Аполлоны» и как собирались лететь к ней «Союзы»-ЛОК-ЛК. Но теперь даже у США нет ракеты, сравнимой по мощи со старым «Сатурном V» или советской Н-1

Ну и в общем-то есть проблемы и со всеми альтернативами НАСА: после недавней катастрофы Falcon-9, весьма неудачно и загадочно взорвавшегося прямо на стартовом столе, ожидаемо поползли в будущее и сроки первого запуска Falcon Heavy, что тоже не добавляет оптимизма американским лунным или марсианским раскладам. Поэтому тут мы пока утешимся красивой анимацией от SpaceX, в которой стартовые мачты космодрома не погибают в облаке горящего керосина:

2. Китай. Дракон за Великой стеной

Говорить о планах Китая в новой лунной гонке сложнее всего. Небольшое количество опубликованных, а то и реально подсмотренных материалов о китайских лунных планах задают больше вопросов, нежели дают ясных и однозначных ответов, в то время, как китайский официоз скорее декларирует общие планы и сроки, но не сообщает существенных деталей о технологии их осуществления:

Краткое описание китайской схемы полёта к Луне, в случае использования трёхпусковой схемы. Рандеву на земной орбите

В случае Китая, речь может идти только о трёхпусковой схеме: одной тяжёлой ракетой «Чанчжэн-5», о которой я писал, выводится возвращаемый аппарат – орбитальный корабль и лунный посадочный модуль совместно с тормозным блоком для перехода на лунную орбиту, а ещё на двух ракетах выводятся на НОО танкер и разгонный блок для запуска космического корабля на траекторию к Луне. Вся эта мегаконструкция стыкуется на земной орбите, после чего переходит на траекторию полёта к Луне.

По другому в случае Китая, людей к Луне не запустить: разрабатываемая сейчас ракета «Чанчжэн-5» сможет вытянуть на НОО 25 тонн полезной нагрузки, что составляет чуть больше трети грузоподъёмности сверхтяжёлой американской SLS, причём даже в самом «кастрированном», текущем варианте, со старыми удлинёнными на одну секцию стартовыми ускорителями SRB.

Но даже пять тонн дополнительного веса, который могут вытянуть на НОО три «Чанчжэна-5» (25+25+25 тонн вместо 70 тонн у SLS) надо будет потратить на всякие стыковочные узлы, манёвровые двигатели и топливо для коррекции орбит и стыковки. Так что, в целом, проблемы Китая с пилотируемой экспедицией к Луне столь же неприятны, как и у американцев с их «недоделанным» SLS.

В некоторых источниках можно встретить четырёхпусковой вариант китайского полёта к Луне. При запуске с помощью четырёх ракет, два пуска выводят на НОО лунный орбитальный корабль и лунный посадочный модуль со своими тормозными блоками, использующимися для торможения у Луны, а ещё две ракеты-носителя выводят лунные разгонные блоки, которые стыкуются отдельно с орбитальным кораблём и с лунным посадочным модулем.

Для всех пусков используются ракеты «Чанчжэн-5», что, в целом, позволяет поднять массу конструкции до 100 тонн (4 пуска по 25 тонн) и приблизиться к параметрам советского лунного проекта с использованием ракеты Н-1.

После двух околоземных стыковок орбитального корабля и лунного посадочного модуля со своими разгонными блоками, две части лунного комплекса стартуют к нашему спутнику по отдельности, по отдельности же выходят на окололунную орбиту (причём, все эти операции, начиная от стыковки на земной орбите и заканчивая выходом на лунную орбиту, лунный посадочный модуль делает в автоматическом режиме по командам с Земли).

Ну, а финальным аккордом такой схемы является стыковка орбитального корабля с лунным посадочным модулем на орбите Луны:

Схема китайской лунной программы в случае четырёхпусковой схемы. Тройное рандеву – дважды на земной и один раз – на лунной орбите

Ну и, наконец, есть ещё один вариант трёхпусковой схемы, который сочетает варианты рандеву на земной и на лунной орбите. В этом варианте апробированная лёгкая ракета-носитель (скорее всего – ещё старый, но проверенный «Чанчжэн-2F» на токсичной паре НДМГ+АТ) выводит на околоземную орбиту пилотируемый лунный корабль с экипажем, вторая, тяжёлая ракета-носитель «Чанчжэн-5» – выводит на НОО лунный разгонный блок, который стыкуется с пилотируемым орбитальным кораблём, а ещё одна тяжёлая ракета-носитель «Чанчжэн-5» выводит на околоземную орбиту лунный посадочный модуль с пристыкованным к нему разгонным блоком, который стартует к Луне отдельно, где и происходит финальная встреча с долетевшим туда самостоятельно орбитальным кораблём:

Комбинированная схема трёхпускового полёта к Луне, с одним рандеву на земной и одним рандеву на лунной орбите. Разгонный и тормозной блоки для лунного модуля не показаны, но они там, скорее всего, есть

Насколько такая схема позволит гарантированно добраться до Луны, у меня, если честно, вызывает вопрос. Два «Чанчжэна-5» позволяют вывести на НОО не более 50 тонн и ещё около 9 тонн можно забросить с помощью «Чанчжэн-2F» в пилотируемом варианте. В сумме это даёт не более 59 тонн полезной нагрузки на НОО, что критически мало даже для полёта двух тайконавтов к Луне (именно в силу этого факта грузоподъёмность королёвской Н-1 по ходу реализации советской лунной программы вытягивали с 75 тонн до 90 тонн).

С другой стороны, если на вышеприведённой схеме просто «забыли» ещё один «Чанчжэн-5», то всё становится не столь печальным: тогда в такой схеме на орбиту попадает около 80 тонн полезной нагрузки (25+25+25+9 тонн), чего уже вполне хватает на задуманный план лунной экспедиции.

Надо сказать, что, как уже было отмечено, пока что все китайские материалы о пилотируемой лунной программе скорее носят эскизный характер: судя по всему, окончательное решение о конфигурации лунной пилотируемой программы в Китае не принято, хотя принципиально китайцы однозначно нацелились на покорение Луны.

Кроме того, не стоит скидывать со счетов и возможность Китая реализовать свой проект сверхтяжёлой ракеты-носителя. Пока что такой проект лишь был представлен на международном аэрокосмическом конгрессе в 2013 году, однако опровержений озвученной тогда информации о проекте сверхтяжёлого «Чанчжэн-9» пока что не поступало.

Сравнительные размеры китайский ракет-носителей: «Чанчжэн-7» (CZ-7, развитие пилотируемого «Чанчжэн-2F»), новой тяжёлой ракеты «Чанчжэн-5» (CZ-5) и проектируемой сверхтяжёлой «Чанчжэн-9» (CZ-9)

Разрабатываемый китайский сверхтяжёлый носитель, согласно имеющимся сообщениям, будет выводить массу полезной нагрузки до 133 тонн на НОО и до 50 тонн на лунную траекторию, так как пока что будет использовать керосиновые разгонные блоки. Рассматриваются два альтернативных варианта ракеты-носителя: схема A – с керосиново-кислородными ускорителями и схема B – с твёрдотопливными ускорителями первой ступени.

Читайте также:  Календарь периодов луны без курса для

Пока что планы на создание «Чанчжэн-9», который уже заочно назвали «китайским «Сатурном V»», носят ещё более эскизный характер, нежели варианты запуска с использованием уже существующего в металле «Чанчжэн-5», однако в случае его создания Китай и в самом деле получит носитель самого тяжёлого класса, который вполне встанет в один ряд с советскими Н-1 и «Энергией» и американским «Сатурном V», позволив осуществить амбициозный план запуска китайских космонавтов к Луне с помощью лишь одного-единственного пуска с Земли

3. Россия. Будем жить по средствам

На фоне реально создающегося в США сверхтяжёлого носителя SLS и успехов Китая в сегменте создания тяжёлых носителей – «Чанчжэн-5» и планов по сверхтяжёлому носителю «Чанчжэн-9», у России ситуация с новой лунной программой выглядит совсем не так радужно.

Фактически, российские намётки по лунному проекту страдают от тех же ограничений, что и китайская лунная программа, а именно – от отсутствия сверхтяжёлой ракеты, которая могла бы разом решить массу проблем в освоении дальнего космоса.

Вот существующая российская схема пилотируемой лунной программы:

Фактически, российская схема полёта к Луне – это четырёхпусковая схема с использованием четырёх ракет «Ангара-А5В» с криогенным разгонным блоком и с двумя рандеву на околоземной и одним рандеву на окололунной орбите. Аналогичная схема показана на второй «китайской» схеме, в которой используется четыре запуска «Чанчжэн-5».

Проблема «Ангары» в её базовом варианте состоит ещё и в том, что её грузоподъёмность хоть и ненамного, но ниже, чем у «Чанчжэн-5», в силу чего при четырёх пусках обычной «Ангары-5» на НОО можно вывести лишь 96 тонн груза против 100 тонн у 4-х «Чанчжэн-5».

В силу этого, в российском проекте делается упор на криогенную вторую ступень, которая позволяет поднять нагрузку на НОО до 34-38 тонн и довести общий вес четырёхпускового проекта до 136-152 тонн.

В таком варианте, как показано на схемах, на лунной орбите можно иметь сцепку весом в 36,2 тонны – не хуже, чем в варианте американского проекта «Аполлон», а в чём-то даже и лучше – так, в российском варианте четырёхпускового запуска массу посадочного лунного модуля можно иметь 18,2 тонны против 15 тонн в проекте «Аполлон».

С другой стороны, сама по себе судьба криогенной ступени для «Ангары-5» пока что находится под вопросом, в силу чего, возможно, российским конструкторам надо будет действовать в ограничениях 96 тонн на четыре запуска, что уже гораздо более неприятно с точки зрения возможностей экспедиции и фактически сводит её к варианту лунной программы Н-1, с двумя космонавтами во всей экспедиции и с одним – в лунном посадочном модуле.

«Сумму технологий» современного российского ракетостроения можно наглядно рассмотреть вот на этой достаточно полной схеме (кликабельно):

На ней достаточно наглядно показаны существующие и разрабатываемые российские универсальные ракетные модули (УРМ). В их число входят УРМ-1М, базовый модуль семейства «Ангара», работающий на кислороде и керосине с использованием «четвертушки» от двигателя РД-171, двигателя РД-191:

Однокамерный РД-191 был сделан путём «деления на четыре» очень удачного двигателя РД-171, который в оригинале устанавливался на первой ступени РН «Энергия» – южмашевском «Зените»

Второй УРМ, тоже работающий на паре керосин-кислород – это УРМ-1К, который должен использовать полноразмерный, четырёхкамерный РД-171 от «Зенита». Заменой скорее всего уже безвременно погибшего украинского ракетоносителя станет новая РН «Феникс», которая должна заменить «Зенит» и под которую, вполне возможно, и была произведена покупка «Морского старта».

Четырёхкамерные двигатели РД-171 на ракете «Зенит» (слева) и его «дедушка» РД-108 на центральном блоке «Союза», ведущего своё происхождение от баллистической ракеты Р-7 (справа)

Однако, понятным образом, с планируемой грузоподъёмностью в 15 тонн новый «Феникс» мало чем поможет за пределами геостационарной орбиты Земли, в силу чего для Луны могут быть задействованы иные, более мощные варианты компоновок универсальных ракетных блоков.

Эти компоновки показаны в правой части схемы и носят пока что условные наименования СТК-3, СТК-5 и СТК-7 (по количеству блоков УРМ-1К, стартующих в едином пакете от Земли).

Все эти варианты ракет-носителей используют криогенный блок третьей ступени, который должен использовать двигатель РД-0150. Универсальный ракетный модуль с использованием РД-0150 носит название УРМ-3В а также проходит под именем «Амур».

Я уже писал о необходимости криогенного блока для эффективности вывода грузов на околоземную орбиту, так и для обеспечения разгона к Луне. К сожалению, история водородных двигателей в СССР, а потом и в России была отнюдь не столь успешна, как в США, которые смогли «оседлать» водород ещё в середине 1960-х годов.

В СССР же водородные двигатели были созданы только на излёте существования Советского Союза и использовались на второй ступени РН «Энергия» (РД-0120). Эти мощные двигатели были созданы в воронежском КБ химической автоматики (КБХА) и обеспечивали тягу в 155 тс на уровне моря и 200 тс в ваккуме.

Однако, уже к середине 1990-х годов российские предприятия в связи с интенсивной утратой сложившейся кооперации и стремительным сокращением номенклатуры выпускаемой продукции были не в состоянии производить подобный двигатель. По некоторым оценкам, сейчас на восстановление утраченных технологий и возврат к производству РД-0120 требуются затраты в размере 1 млрд. долларов США и несколько лет напряжённой работы.

В силу этого прискорбного факта, в 2000-х годах КБХА, используя задел РД-0120, создало меньший кислородно-водородный двигатель, РД-0146, который прошёл все огневые испытания:

Параметры РД-0146 гораздо скромнее гиганта РД-0120. Предсерийный образец РД-0146 рассчитан на тягу в 6,6 тс – почти на два порядка меньше, чем у гиганта РД-0120. В силу этого факта для УРМ-3В «Амур» приходится использовать два модифицированных РД-0146, в варианте РД-0150, который ещё предстоит модифицировать и довести усилиями КБХА.

Ещё более амбициозную задачу ставит и проект ракеты СТК-7, который использует 7 стартовых блоков УРМ-1К и отдельный, ещё не разработанный криогенный разгонный блок с четырьмя двигателями РД-0150.

Но тут уже мы и в самом деле входим на тонкий лёд весьма смелых допущений, о которых я уже высказался в своей оценке возможности «Роскосмоса» по созданию своей сверхтяжёлой ракеты, которая и в самом деле поместит Луну на расстояние «вытянутой руки» от всех нас.

От редакции РуАНа

Удивительно, что у нас вообще что-то куда-то летает, хотя методом «научного тыка», как оказалось, тоже можно кое-чего добиться. Дело в том, что наша фундаментальная наука совсем ничего не знает о реальных природных процессах, которые нас окружают, и которые ей по долгу службы надо было бы тщательно изучать.

Фундаментальная наука даже приблизительно не знает, что такое ветер, дождь, вода, электричество, гравитация и очень многое другое. Перечень незнаний нашей фундаментальной «науки» перечислен в статьях серии «Наука не хочет знать». Но кроме этого, там дана и правильная информация, которая наукой скрывается.

Более подробную и разнообразную информацию о событиях, происходящих в России, на Украине и в других странах нашей прекрасной планеты, можно получить на Интернет-Конференциях, постоянно проводящихся на сайте «Ключи познания». Все Конференции – открытые и совершенно безплатные. Приглашаем всех просыпающихся и интересующихся…

Источник

Adblock
detector