Солнечная энергия. Цифры и факты
Основные характеристики солнечного света
Освещенность (усредненная мощность солнечного излучения, измеренная в верхней атмосфере Земли перпендикулярно солнечным лучам): 1366 Вт на квадратный метр (или 1361, в соответствии с НАСА).
«Стандартное солнце» (пиковая мощность излучения, которая достигает поверхности Земли на уровне моря в районе экватора в безоблачный полдень): 1000 Вт/м 2 , или 1 кВт/м 2 .
Это значение обычно используется в характеристиках фотоэлектрических систем. Здесь и далее все цифры приведены для поверхностей, оптимально расположенных относительно солнца (перпендикулярно лучам) в соответствии с широтой. Для горизонтальных поверхностей вы получите меньше солнечного света: чем дальше от экватора, тем ниже плотность солнечной энергии.
Инсоляция (среднее количество часов «стандартного солнца» на протяжении суток): от 4–5 солнечных часов на северо-востоке США до 5–7 часов на юго-западе. Инсоляция часто указывается в кВт·ч, численно вытекая из значения «стандартного солнца» в 1 кВт.
Общее количество излучаемой энергии солнечного света в день на м 2 на уровне моря: (энергия за день) = 1 кВт·ч × (инсоляция в часах). Учитывая среднюю инсоляцию в США, равную 5 солнечным часам, это значение обычно равно 5 кВт·ч/м 2 .
Солнечная мощность, усредненная за весь день: Wattsaverag = (энергия за день)/24. Для инсоляции в 5 кВт·ч мощность, усредненная за весь день – 5000 Вт/24 = 208 Вт/м 2 . Обратите внимание, что только небольшая часть этой энергии может быть преобразована в электричество из-за не очень высокой эффективности фотоэлектрических систем.
Типовые характеристики фотоэлектрических систем
Средний КПД распространенных коммерческих солнечных панелей: на кристаллическом кремнии (CSI) – 12–17%; тонкопленочных (из аморфного кремния и других материалов) – 8–12%.
Мощность, генерируемая панелью в один квадратный метр: PVwatts = (солнечная мощность) × (средний КПД), где КПД преобразуется в десятичное число.
Пиковая мощность в безоблачный полдень: PVwatts-peak = 1000 Вт × КПД. Как правило, пиковая мощность равна 120170 Вт/м 2 для CSi и 80–120 Вт/м 2 для тонких пленок (TF).
Суммарное усредненное количество энергии, производимой панелью в один м 2 за день: PVday = PVwatts-peak × (Инсоляция в часах). Для инсоляции в 5 часов это значение будет 0.6–0.85 кВт/м 2 для CSi и 0.4–0.6 кВт/м 2 для TF.
Выработанная энергия панели, усредненная за весь день: PVwatts-average = PVday/24. Это примерно 25–35 Вт/м 2 для CSi и 17–25 Вт/м 2 для TF.
Общая энергия, генерируемая фотоэлектрическим модулем на м 2 в год: PVyear = (полная энергия в день) × 365, которая будет равна примерно 219–310 кВт·ч для CSi и 146–219 кВт·ч для TF. Обратите внимание, что инверторы имеют эффективность 95–97%, поэтому фактической электроэнергии будет на 5% меньше.
Ожидаемая стоимость электроэнергии с одного м 2 , сэкономленной за год: Saving = PVyear × 0.95 × (стоимость кВт·ч), где 0.95 – КПД преобразователя и потери в проводах.
В среднем в США стоимость одного кВт·ч электроэнергии равна $0.12, это дает в год $24–35 для CSi и $17–24 для тонких пленок. Таким образом, в лучшем случае, можно будет сэкономить $35 в год на 1 м 2 панели. Эта цифра относится к высокоэффективной системе с номинальной мощностью 170 Вт/м 2 . Учитывая тот факт, что в настоящее время стоимость типичной фотоэлектрической системы составляет $8000 на 1000 Вт, такие установки будут стоить 170/1000 × $8,000 = $1,360 за м 2 . Это означает, что в нашем примере, гипотетический срок окупаемости будет 1360/35 = 39 лет. Никакое оборудование не сможет так долго функционировать. Скидки и кредиты могут сократить это время более чем на половину, однако, все равно, для среднестатистического домашнего хозяйства установка солнечной панели, скорее всего, не окупится. Конечно, это всего лишь пример. В районах с другой инсоляцией и другими затратами на установку срок окупаемости может быть выше или ниже.
Краткая информация о Солнце
- Диаметр: 1,392,000 км;
- Масса: 1,989,100 × 10 24 кг;
- Температура на поверхности:
5,700 °С;
385 млрд. МВт);
Перевод: Андрей Гаврилюк по заказу РадиоЛоцман
Источник
Измеряем солнечное тепло
В отличие от измерения температуры (процедуры обыденной и всем хорошо известной), измерение теплового потока применяется не часто. Более того, далеко не все понимают его физическую суть, полагая, что это просто ещё один способ измерения температуры. На самом деле, измеряя поток тепла, можно не просто узнать состояние системы, а предугадать, каким оно станет в ближайшем будущем.
Поток тепла – это энергия, проходящая через единицу площади. Единица его измерения, как нетрудно догадаться, ватт на квадратный метр (Вт/м 2 ). Зная поток тепла, мы можем оценить излучаемую системой энергию, причём она может не иметь прямого отношения к температуре. Например, оценивать потребление калорий организмом спортсмена на отдыхе и во время тренировок с помощью термометра бессмысленно, так как организм регулирует температуру. Но это можно сделать, измеряя излучаемое телом тепло, и выяснить, что при нагрузках исходящая тепловая энергия тела человека в 10 раз больше, чем в покое!
Мы можем без труда измерить температуру радиатора источника питания. Но как оценить потери тепла через окна и стену здания? Как померить «температуру» солнечных лучей? В этих случаях нужный ответ мы можем получить, измеряя не температуру, которую измерять попросту негде, а поток тепловой энергии, приходящий от солнца или исходящий от здания. Зная эту величину, можно вычислить, какой будет температура поверхности, которая поглощает или отражает эту энергию. В этом заключается важное преимущество измерения потока тепла – мы можем среагировать на причину ситуации, а не на её следствие (увеличение температуры).
Вернёмся к измерению энергии солнечных лучей. Мы привели этот пример как наиболее простое и очевидное объяснение разницы между измерениями температуры и потока тепла. Но на самом деле эта задача довольно часто встаёт перед разработчиками и пользователями фотовольтаических систем. Ведь их эффективность зависит не только от положения солнца и наличия облаков, но и загрязнённости батарей и прочих факторов. Зная энергию солнечного излучения, можно оценить мощность, которую должны отдавать солнечные элементы, и принять меры, если реальная мощность не соответствует вычисленной.
Измерение энергии солнечного излучения также может применяться в метеорологии. Солнце – главный инициатор процессов в атмосфере, исследуя которые, метеорологи рассчитывают вероятность погодных явлений и стихийных бедствий. А в «умных» домах и оранжереях измерители солнечной энергии позволят управлять климатическими системами, автоматическими жалюзи и ставнями.
Убедившись в полезности измерения теплового потока Солнца, самое время опробовать это на практике. Для этого можно использовать решение компании greenTEG – сенсор gSKIN (рис.1), созданный специально для быстрых измерений энергии солнечного света.
Рис.1. Сенсор gSKIN
Прнцип действия сенсоров gSKIN основан на термоэлектрическом эффекте (его иногда называют эффектом Зеебека) – возникновении ЭДС в замкнутой цепи из разнородных проводников, контакты которых находятся при различных температурах. В качестве материала разнородных проводников применяется теллурид висмута с добавками p- и n-типа (рис. 2). Множество термостолбиков из теллурида висмута соединены в одну цепь и заключены в материал подложки сенсора (рис. 3). Напряжение, возникающее на выходе сенсора, прямо пропорционально проходящему через него теплу.
Рис.2. Чувствительный элемент сенсоров gSKIN
Рис.3. Устройство сенсора gSKIN
Сенсоры gSKIN способны измерять тепловой поток порядка 0,01 Вт/м 2 . Выходное напряжение сенсоров – порядка микровольт, поэтому для снятия с них показаний необходимо применять прецизионные АЦП и измерительные приборы. Из преимуществ сенсоров gSKIN нужно отметить линейность частотной характеристики, гомогенность поверхности и быстрое (около секунды) время отклика.
О компании
Компания greenTEG (Цюрих, Швейцария) разрабатывает и производит тепловые сенсоры и решения для получения энергии из природных источников. Компания была основана в 2009 году, а ее первые продукты были выпущены на рынок в 2011 году. Все изделия компании greenTEG изготавливаются на фабриках в Швейцарии.
Источник
Как расчитать количество солнечной энергии в регионе
Солнечная инсоляция – это величина, определяющая количество облучения поверхности пучком солнечных лучей (даже отраженных или рассеянных облаками). Поверхностью может быть что угодно, в том числе и солнечная батарея, которая преобразует энергию солнца в электрическую энергию. И вот насколько эффективна будет ваша природная электростанция и определяет параметр солнечной инсоляции. Измеряется инсоляция в кВт*ч/м2, то есть количество энергии солнца, полученное одним квадратным метром поверхности в течении одного часа. Естественно полученные метрики рассчитаны для идеальных условий: полное отсутствие облачности и падение солнечных лучей на поверхность под прямым углом (перпендикулярно).
Довольно часто люди полагают, что если солнце встает в 6 утра и садится в 7 вечера, то дневную выработку солнечной панели нужно считать как произведение ее мощности на 13 часов пока светило солнце. Это в корне неправильно, ведь существует облачность, но главное солнце двигается по небосклону отбрасывая лучи на поверхность земли под разными углами. Да, безусловно, вы можете использовать специальные трекеры, которые будут поворачивать вашу солнечную батарею в сторону солнца, но это дорого и редко экономически оправдано. Трекеры применяются, когда необходимо увеличить мощность на единицу площади.
Откуда берутся данные солнечной активности
Изучением солнечной активности во всех регионах нашей планеты занимается Национальное управление по аэронавтике и исследованию космического пространства (NASA). Круглосуточно спутники следят за деятельностью солнца и заносят полученную информацию в таблицы. В расчетах учитываются данные последних 25 лет. Пример такой таблицы для Санкт-Петербурга (59.944, 30.323) вы можете увидеть по ссылке https://eosweb.larc.nasa.gov/ . Данная организация относится к федеральному правительству США и, к сожалению, сайт их доступен только на английском языке.
Нет необходимости расшифровывать все значения и коэффициенты в таблице, ведь нас интересуют всего два – это собственно само значение солнечной инсоляции в определенные месяцы (OPT) и значение оптимального угла наклона солнечной панели (OPT ANG).
Зная значение инсоляции мы можем рассчитать приблизительную выработку нашей солнечной электростанции в данном регионе в конкретный месяц или в среднем в год.
Расчет выработки солнечной электростанции на основе значений инсоляции
Допустим имеем в Санкт-Петербурге сетевую солнечную электростанцию мощностью 5 кВт и хотим посчитать ее выработку в июне. Солнечные модули установлены на оптимальный угол.
5 кВт * 5,76 кВт*ч/м 2 * 30 дней = 864 кВт*ч
* Формула упрощенная, поэтому расчетные единицы измерения в формуле не совпадут с ответом. Это исправляется введением в формулу параметров солнечной электростанции и перевода дней в часы.
Но в январе эта же электростанция сгенерирует всего 5*1,13*30=169,5 кВт*ч, поэтому Питере солнечные батареи активно используются только в летние периоды.
За год же, подобная солнечная электростанция сможет получить 5*3,4*365=6205 кВт или 6,2 МВт чистой электроэнергии. Выгодно? Решать вам, ведь срок жизни сетевой электростанции более 50 лет, а тарифы на промышленное электричество растут каждый год не менее чем на 10%.
Источник
Как измерить мощность солнечной батареи: рекомендации
На данный момент рынок солнечных батарей представляет широкий выбор производителей с большим ассортиментом панелей и комплектующих. Но у людей, которые желают приобрести для своего пользования необходимое оборудование, самым первым вопросом является как можно измерять мощность и эффективность солнечных батарей. Для этого существует несколько методов, каждый из которых имеет свои возможности.
Главные характеристики солнечных батареи
Солнечная станция — достаточно сложная система, которая состоит не только из панелей и проводов. Одной из главных составляющих также считается аккумулятор, который концентрирует в себе накопленную электроэнергию и распределяет её во время активности потребителей. Поэтому стоит выделить главные характеристики, которые влияют на мощность батареи:
- производительная мощность панели (зависит от размера и материла);
- состояние аккумулятора (уровень его заряда, изношенность, объём);
- качество соединительных элементов (их сопротивление);
- позиция панелей к солнцу; погодные и сезонные условия.
Таким образом, мощность солнечной батареи — это итоговый результат комплексного взаимодействия всех этих факторов. Их учёт сможет не только подобрать необходимую вам мощность, но и в большинстве случаев найти оптимальный вариант, который поможет снизить расходы на комплектующие.
Способы измерения мощности
Большинство компаний чаще всего предоставляют своим клиентам солнечные станции «под ключ» с уже рассчитанной мощностью и ценой. Но всё же рекомендуется самостоятельно убедиться в достоверности данной информации. Существует несколько подходов к определению мощности, их можно разбить на две основные категории:
Теоретический подход — это сбор доступной информации о комплектующих, её сопоставление и расчёт. На сайте компании вы можете узнать заводскую мощность панелей, ёмкость аккумулятора, сопоставить это с вашим средним потреблением электроэнергии и в итоге рассчитать сколько панелей вам будет необходимо.
Например, комплект солнечных батареи мощностью 250 Вт и напряжением 12 В сможет обеспечить энергопотребление хозяйства 200 Вт/час. При условии активной нагрузки 6 часов в день и ёмкости электрического аккумулятора 16,7А/ч, который не рекомендуется разряжать ниже 75%.
Такой подход требует опыта и выдержки, так как придётся работать с математическими формулами и учитывать все важные показатели.
Практические методы проще, но требуют наличия специального оборудования. При этому, у вас должен быть доступ к батареям, которые вы собираетесь протестировать.
Метод первый
В солнечный день (весной или летом) необходимо расположить панель так, чтобы лучи максимально покрывали её площадь. Оптимальный вариант проводить тестирование в полдень — когда солнце находится на пике своего зенита.
Далее стоит взять два прибора — вольтметр и амперметр. Подключая эти приборы к разъёмам батареи, вы должны получить два значения: Voc — напряжения холостого хода (вольтметром) и Isc — ток короткого замыкания (амперметром). Зафиксировав показания, далее в документации к панели стоит узнать значение отношения базовой мощности к произведению напряжению холостого хода и тока короткого замыкания.
Допустим, что в нашем случае мы измеряем батареи с заявленной производителем мощностью в 100 Вт. Значения Voc — 22,10, значение Isc — 6,36, а третий показатель — 0,78. Таким образом, для расчёта мощности решаем формулу 22,10*6,36*0,78 = 109,63. Результат и есть мощностью панели в момент фиксации её показателей. Следует отметить, что при расчётах возможно отклонение до 10%. Значение 109,63 Вт для панели в 100 Вт — отличный показатель. Если же на практике в таких благоприятных условиях получается мощность ниже 70-80 Вт, то стоит засомневаться в покупке данного товара.
Метод второй
В этом случае понадобиться более сложный прибор — МРРТ-контроллер, а также аккумулятор с неполной зарядкой. Эксперимент также необходимо проводить в максимально благоприятных условиях. Далее МРРТ следует подключить к аккумулятору, а затем солнечную панель к МРРТ. В результате прибор покажет вырабатываемое напряжение панели (Vmp) и ток (Imp). Перемножив показания можно получить мощность.
Если Vmp — 18 В, а Imp — 6 А, то в результате получится мощность станции в 108 Вт.
Источник