Формулы радиуса, орбитальной скорости и периода пл
Формулы для расчета радиуса, скорости орбитального движения и периода планет.
При расчетах используются величины:
— радиус орбиты R (при условном круговом движении) в а.е.
— период T (земной год)
— орбитальная скорость V а.е./год
1. Соотношение радиуса и скорости.
Произведение радиуса и квадрата скорости для всех планет одинаково.
R V2 = const
(получается от преобразований третьего закона Кеплера: R3/ T2 const)
R V2 = R V2 — для разных радиусов обрит разных планет и разных радиусов кривизны одной планеты.
производим вычисления:
для Земли — 1 х 6.28 х 6.28 / 1 = 39.434
где V — 2х 3.14 х R / T 2 х 3.14 х 1 : 1 = 6.28 а.е. /год
для Марса 1.532 х 5.07 х 5.07 = 39.379
скорость для марса : 2 х 3.14 х 1.52 : 1.88 = 5, 07 а.е. / год
радиус орбиты Марса взят средний — он колеблется от 1.405 (перигелий) до 1.693 (афелий)
для Юпитера 5.2 х 2.75 х 2.75 = 39.325
скорость 2 х 3.14 х 5.2 : 11.86 = 2.75 а.е. / год
2. Соотношение радиуса и периода.
Для вычисления периода по радиусу орбиты можно использовать следующую формулу:
Радиус, умноженный на корень квадратный из радиуса, дает период.
(Если единица измерения радиуса — а.е.
то период получается в земных годах.)
получается, что для каждой планеты есть некое число, которое умноженное на себя дает радиус орбиты, а умноженное на себя еще раз — дает период.
Для Марса это число примерно 1.232, для Юпитера 2.28, для Урана 4.38,
для Плутона 6.26 , для Венеры 0.85
Получается числовой ряд планет:
Меркурий 0.62 0.387 0.24
Венера 0.85 0.723 0.615
Земля 1 1 1
Марс 1.232 1.52 1.88
Юпитер 2.28 5.2 11.86
Сатурн 3.09 9.58 29.6
Уран 4.38 19.18 84.048
где: первое это некое базовое число; второе радиус; третье период.
зависимость:1 — число, 2- число возведенное в квадрат, 3- возведенное в куб.
Базовое число планеты — соотношение скоростей Земли и планеты.
А соотношение скоростей Земли и планеты получается из соотношения квадратных корней радиусов этих планет.
Теперь, если взять, например, орбитальную скорость Земли за единицу,
то орбитальная скорость Земли относительно скорости Марса 1.2328.
тогда: радиус обриты Марса есть 1.2328 х 1.2328 = 1.52 а.е.
а период орбиты Марса 1.52 = 1.2328 = 1.8739 в земных годах
что в упрощенной записи :
Vз : V м (Vз :V м ) 2 = R (Vз :V м ) 2 х R = T
или n , далее n в квадрате и n в кубе.
где n Vз :V м — отношение скоростей Земли и Марса.
R V2 = const (получается от преобразований третьего закона Кеплера)
4. Квадрат движения.
Для понимания сути движения планет интересно сделать ещё и такое построение.
Все планеты СС одновременно движутся по своим орбитам. Если взять некий общий отрезок времени,то каждая из планет пройдет за это время по орбите своё раcстояние.
Если на основе этого расстояния, построить квадрат, то площадь этого квадрата для каждой планеты будет пропорциональна орбитальной скорости.
И, если площадь этого квадрата умножить на радиус орбиты, то для всех планет получится одинаковое число, выражающее объём.
И получиться некая константа трехмерного пространства.
Это можно выразить так:
Квадрат расстояния пройденной каждой планетой за общую единицу времени обратно пропорционален радиусам их орбит или произведение радиуса обриты на квадрат расстояния для всех планет за общую единицу времени есть величина одинаковая.
5. Период соединения.
Есть ещё одна формула которая позволяет вычислить через какое время произойдет соединение планет планеты.
Т1 х Т2 / Т2-Т1
6. И, конечно, каждая планета за одну единицу времени проходит угол (сектор), который по отношению к земному, обратно пропорционален периодам.
Формулы могут применяться и для расчета параметров движения спутников.
На рисунке: Таблица соотношения параметров планет Солнечной системы относительно Земли.
комментарии к таблице.
Данные для других планет выражен по отношению к параметрам дв. Земли.
Соотношение скоростей мы понимаем, как соотношение путей пройденных планетой по своей орбите за единицу времени. Соотношение скоростей, возведенное в квадрат дает соотношение радиусов, а возведенное в куб — соотношение периодов планет.
Источник
Как найти скорость планеты вокруг солнца
Цель работы: изучение движения тел под действием сил тяготения; проверка третьего закона Кеплера.
На смену геоцентрической системе мира, созданной в начале нашей эры Птолемеем, пришла гелиоцентрическая система, созданная Коперником. Несколько позднее немецкий астроном И. Кеплер на основе астрономических наблюдений установил законы движения планет вокруг Солнца.
Согласно 1-му закону Кеплера любая планета движется вокруг Солнца по замкнутой кривой, которая называется эллипсом (внешне похож на овал). Солнце находится в одном из фокусов этого эллипса. Эллипс имеет два фокуса: это две такие точки внутри кривой, сумма расстояний от которых до произвольной точки эллипса постоянна. Оказывается, что орбиты всех планет Солнечной системы лежат примерно в одной плоскости. Большинство планет движутся по орбитам-эллипсам, которые близки к окружностям. Лишь Марс и Плутон имеют сравнительно вытянутые орбиты.
Второй закон Кеплера устанавливает, что скорость планеты больше тогда, когда она в своем движении находится ближе к Солнцу (в так называемой точке перигелия) и меньше тогда, когда она находится на наибольшем расстоянии от Солнца (в точке афелия). Третий закон Кеплера устанавливает связь между периодом обращения планеты вокруг Солнца и ее средним расстоянием от Солнца, он применяется ко всему коллективу планет Солнечной системы.
Законы Кеплера получили свое объяснение лишь после открытия законов тяготения. Физические объекты участвуют в гравитационном взаимодействии, т.е. они притягиваются друг к другу. Гравитационное взаимодействие обладает всеобщей универсальностью: ему подвержены все материальные объекты и даже физические поля. Закон всемирного тяготения был открыт И. Ньютоном. Он утверждает, что два неподвижных точечных тела взаимодействуют друг с другом с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними, т.е.
(1) |
где γ называют гравитационной постоянной. Этот закон справедлив и для взаимодействия однородных шаров, но в этом случае под r следует понимать расстояние между их центрами.
Рассмотрим движение планеты вокруг Солнца (рис. 1). Планета движется под действием силы F (силы тяготения (1)), которая действует вдоль линии, соединяющей центры тел. Движением Солнца можно пренебречь, так как его масса М гораздо больше массы планеты m. Пусть орбита планеты представляет собой окружность, тогда скорость движения планеты направлена по касательной к этой окружности и перпендикулярно действующей силе. Скорость в этом случае постоянна по величине, поэтому планета движется с центростремительным ускорением. Второй закон Ньютона для этого движения выглядит следующим образом:
Отсюда получаем, что . Период обращения планеты вокруг Солнца
. Выразив из предыдущей формулы v, получаем
. Возведя правую и левую части этой формулы в квадрат, после преобразований получим:
(2) |
Это и есть третий закон Кеплера, который можно сформулировать следующим образом: отношение куба расстояния от планеты до Солнца к квадрату периода ее обращения вокруг Солнца есть величина постоянная, одинаковая для всех планет Солнечной системы. В случае движения по эллипсу, когда расстояние от планеты до Солнца при движении изменяется, в законе фигурирует некоторое среднее расстояние, т.е. полусумма максимального и минимального расстояний от данной планеты до Солнца. Закон Кеплера справедлив для любой планетной системы, а также для системы спутников какой-либо конкретной планеты, например, для системы спутников Юпитера или Урана. В последнем случае под М в формуле (2) понимается масса соответственно Юпитера или Урана.
Источник
Орбитальные скорости планет Солнечной системы: характеристики и траектории
Опытные астрономы прекрасно знают о том, что орбитальная скорость планет напрямую связана с их расстоянием от центра системы – Солнца. Ну, а людям, которые только начинают изучать удивительную науку о небесных телах, наверняка было бы интересно узнать об этом побольше.
Что такое орбитальная скорость?
Орбитой называют траекторию, по которой конкретная планета движется вокруг Солнца. Она вовсе не представляет собой идеальную окружность, как думают некоторые люди, не разбирающиеся в астрономии. Более того, она даже не слишком напоминает овал – ведь существует большое количество факторов за исключением силы притяжения Солнца, которые могут повлиять на движение небесных тел.
Также стоит сразу развеять другой известный миф – Солнце вовсе не всегда находится ровно в центре орбиты планет, вращающихся вокруг него.
Наконец, следует отметить, что не все орбиты планет лежат в одной плоскости. Некоторые значительно выбиваются из нее – например, если изобразить стандартные орбиты Земли и Венеры на астрономической карте, то можно убедиться в том, что они имеют всего несколько точек пересечения.
Теперь, когда с орбитами более или менее разобрались, можно вернуться к определению термина орбитальной скорости планет. Именно так астрономы называют скорость, с которой планета движется по своей траектории. Она может немного изменяться – в зависимости от того, какие небесные тела проходят поблизости. Особенно это заметно на примере Марса: каждый раз, когда он проходит в сравнительной близости от Юпитера, он немного замедляется, притягиваясь гравитационным полем этого гиганта.
Ученые давно установили зависимость скорости движения планет вокруг Солнца от расстояния до него.
То есть самая ближайшая к Солнцу планета – Меркурий – движется быстрее всего, в то время как скорость Плутона является самой маленькой в Солнечной системе.
С чем это связано?
Дело в том, что скорость каждой планеты соответствует той силе, с которой Солнце притягивает ее на определенном расстоянии. Если скорость будет меньше, то планета будет постепенно приближаться к звезде и в результате сгорит. Если же скорость слишком большая, то планета просто улетит от центра нашей Солнечной системы.
Каждый астроном, даже начинающий, прекрасно знает, что сила притяжения уменьшается по мере удаления от Солнца. Именно поэтому, чтобы сохранить свое место в Солнечной системе, Меркурий вынужден носиться с бешеной скоростью, Марс может двигаться помедленнее, а Плутон и вовсе едва перемещается.
Меркурий
Самая близкая к Солнцу планета – Меркурий. Вот с него и начнем изучение скорости планет Солнечной системы.
Он может похвастать не только самым малым радиусом орбиты, но и небольшими размерами. В нашей системе это самая маленькая полноценная планета. Расстояние от Меркурия до Солнца – менее 58 миллионов километров, благодаря чему температура на его экваторе жарким днем может дорасти до 400 градусов по Цельсию и даже больше.
Кроме того, чтобы удержаться на своей орбите при такой близости Солнца, планете приходится двигаться с огромной скоростью – около 47 километров в секунду. Так как протяженность орбиты из-за малого радиуса совсем невелика, то полный оборот вокруг звезды он совершает всего за 88 суток. То есть Новый год там можно встречать значительно чаще, чем на Земле. А вот скорость вращения планеты вокруг собственной оси очень небольшая – полный оборот Меркурий делает почти за 59 земных суток. Так, сутки здесь не намного короче года.
Венера
Следующая планета в нашей системе – Венера. Единственная, на которой Солнце встает на западе и садится на востоке. Расстояние до центра системы – 108 миллионов километров. Благодаря этому скорость движения планеты по орбите значительно меньше, чем у Меркурия (всего 35 километров в секунду). Причем это единственная планета, у которой орбита действительно представляет собой практически идеальную окружность – погрешность (или, как говорят эксперты, эксцентриситет) крайне мала.
Правда, протяженность орбиты (по сравнению с Меркурием) у нее значительно больше, из-за чего полный путь Венера проделывает только за 225 дней. Кстати, еще один интересный факт, отличающий Венеру от всех других планет Солнечной системы: период вращения вокруг оси (одни сутки) здесь составляет 243 земных дня. Следовательно, год здесь длится меньше, чем сутки.
Земля
Теперь можно рассмотреть и планету, которая стала домом для человечества – Землю. Среднее расстояние до Солнца – почти 150 миллионов километров. Именно это расстояние принято называть одной астрономической единицей – их используют при подсчете небольших (по меркам Вселенной) расстояний в космосе.
Сложно поверить, но пока вы читаете эту статью, вы движетесь вместе с Землей на скорости почти 30 километров в секунду. Но даже при столь внушительной скорости, чтобы сделать полный оборот вокруг Солнца, планета тратит на это больше 365 суток или 1 год. Зато вокруг своей оси вращается довольно быстро – всего за 24 часа. Впрочем, эти и многие другие факты о Земле очевидны всем, поэтому подробно рассматривать нашу родную планету не станем. Перейдем сразу к следующей.
Эта планета названа в честь грозного бога войны. По всем показателям Марс максимально приближен к Земле. Например, скорость планеты по орбите составляет 24 километра в секунду. Расстояние до Солнца – около 228 миллионов километров, из-за чего на поверхности большую часть времени довольно прохладно – только днем она прогревается до -5 градусов по Цельсию, а ночью здесь холодает до -87 градусов.
Зато сутки здесь практически равны земным – 24 часа и 40 минут. Для упрощения даже был придуман новый термин, обозначающий марсианские сутки – сол.
Так как расстояние до Солнца довольно большое, а траектория движения значительно длиннее, чем у Земли, год здесь длится довольно долго – целых 687 дней.
Эксцентриситет у планеты не слишком большой – около 0,09, поэтому орбиту можно считать условно круглой с Солнцем, расположенным почти в центре описываемой окружности.
Юпитер
Свое название Юпитер получил в честь самого могущественного древнеримского бога. Неудивительно, именно эта планета может похвастать самыми большими размерами в Солнечной системе – его радиус составляет почти 70 тысяч квадратных километров (у Земли, например, всего 6 371 километр).
Удаленность от Солнца позволяет Юпитеру вращаться довольно медленно – всего 13 километров в секунду. Из-за этого на то, чтобы сделать полный круг, у планеты уходит почти 12 земных лет!
Зато сутки здесь самые короткие в нашей системе – 9 часов и 50 минут. Наклон оси вращения здесь крайне мал – лишь 3 градуса. Для сравнения — у нашей планеты этот показатель составляет 23 градуса. Из-за этого на Юпитере совершенно не бывает смен времен года. Всегда стоит одинаковая температура, изменяющаяся лишь в течение коротких суток.
Эксцентриситет у Юпитера довольно маленький – меньше 0,05. Поэтому он равномерно наматывает круги строго вокруг Солнца.
Сатурн
Эта планета не слишком уступает Юпитеру по размерам, являясь вторым по размеру космическим телом в нашей солнечной системе. Его радиус – 58 тысяч километров.
Скорость планеты по орбите, как уже говорилось выше, продолжает падать. Для Сатурна этот показатель составляет всего 9,7 километра в секунду. А пройти со столь малой скоростью приходится действительно большое расстояние – дистанция до Солнца равна почти 9,6 астрономических единицы. Всего на этот путь уходит 29,5 лет. Зато сутки одни из самых коротких в системе – всего 10,5 часов.
Эксцентриситет планеты почти такой же, как у Юпитера – 0,056. Поэтому окружность получается довольно ровной – перигелий и афелий различаются всего на 162 миллиона километров. Если учитывать огромное расстояние до Солнца, то разница совсем небольшая.
Интересно, что кольца Сатурна тоже вращаются вокруг планеты. Причем скорость внешних слоев значительно меньше, чем внутренних.
Еще один гигант Солнечной системы. Только Юпитер и Сатурн превосходят его по размерам. Правда, по весу его обходит еще и Нептун, но это благодаря высокой плотности ядра. Среднее расстояние до Солнца действительно огромно – целых 19 астрономических единиц. Движется он довольно медленно – вполне может позволить себе это при столь большом расстоянии. Скорость движения планеты по орбите не превышает 7 километров в секунду. Из-за такой неспешности на то, чтобы пройти огромное расстояние вокруг Солнца, у Урана уходит целых 84 земных года! Весьма приличный срок.
А вот вокруг своей оси он вращается удивительно быстро – полный оборот совершается всего за 18 часов!
Удивительной особенностью планеты является то, что вращается она вокруг себя не вертикально, а горизонтально. Другими словами, все другие планеты Солнечной системы делают оборот «стоя» на полюсе, а Уран просто «катится» по своей орбите, будто лежа на боку. Ученые объясняют это тем, что во времена формирования планета столкнулась с каким-то крупным космическим телом, из-за чего просто завалилась на бок. Поэтому, хотя в общепринятом смысле сутки здесь очень короткие, на полюсах день длится 42 года, а потом столько же лет стоит ночь.
Нептун
Свое гордое название Нептуну подарил древнеримский повелитель морей и океанов. Недаром даже символом планеты стал его трезубец. По размерам Нептун является четвертой планетой в Солнечной системе, лишь совсем немного уступая Урану – его средний радиус составляет 24 600 км против 25 400.
От Солнца он держится на расстоянии в среднем 4,5 миллиарда километров или 30 астрономических единиц. Поэтому путь, который он проделывает, проходя орбиту, действительно огромен. А если учесть, что круговая скорость планеты составляет всего 5,4 километра в секунду, то нет ничего удивительного в том, что один год здесь приравнивается к 165 земным.
Интересный факт: здесь имеется довольно плотная атмосфера (правда, состоит она преимущественно из метана), и иногда бывают ветра удивительной силы. Их скорость может достигать 2100 километров в час – на Земле даже одиночный порыв такой мощи моментально разрушил бы любой город, не оставив там камня на камне.
Плутон
Наконец, последняя планета в нашем списке. Точнее, даже не планета, а планетоид – недавно его вычеркнули из списка планет из-за малых размеров. Средний радиус составляет всего 1187 километров – даже у нашей Луны этот показатель 1737 километров. Тем не менее название у него довольно грозное – его присвоили в честь бога подземного царства мертвых у древних римлян.
В среднем расстояние от Плутона до Солнца составляет около 32 астрономических единиц. Это позволяет ему чувствовать себя в безопасности и двигаться со скоростью лишь 4,7 километра в секунду – на раскаленную звезду Плутон все равно не свалится. А вот, чтобы сделать полный оборот вокруг Солнца со столь огромным радиусом, эта крохотная планета тратит 248 земных лет.
Вокруг своей оси он вращается тоже очень медленно – на это уходит 152 земных часа или больше 6 суток.
К тому же эксцентриситет самый большой в Солнечной системе – 0,25. Поэтому Солнце находится далеко не в центре орбиты, а смещено почти на четверть.
Заключение
На этом можно заканчивать статью. Теперь вы знаете про скорость планет нашей Солнечной системы, а также узнали множество других факторов. Наверняка теперь вы разбираетесь в астрономии значительно лучше, чем раньше.
Источник