Меню

Как называется схлопывание вселенной

Может ли Вселенная однажды схлопнуться?

Одним из важнейших достижений 20 века стало точное определение того, насколько большой, обширной и массивной является наша Вселенная. Имея примерно два триллиона галактик, заключенных в объеме радиусом в 46 миллиардов световых лет, наша наблюдаемая Вселенная позволяет нам реконструировать полную историю нашего космоса, аж до Большого Взрыва и может быть даже немного раньше. Но как насчет будущего? Какой будет Вселенная? Будет ли?

Большое сжатие может все уничтожить

Кто-то говорит, что расширение Вселенной замедляется. Нобелевскую премию присудили за «открытие» того, что расширение Вселенной увеличивается. Но кто прав? Может ли Вселенная однажды схлопнуться в процессе так называемого Большого Сжатия (обратного Большому Взрыву)?

Что такое большое сжатие

Лучше всего будущее поведение предсказывается на основе поведения прошлого. Но так же, как люди могут иногда удивлять нас, Вселенная тоже может.

Скорость расширения Вселенной в определенный момент зависит только от двух факторов: полной плотности энергии, существующей в пространстве-времени, и количества присутствующей кривизны пространства. Если понимаем законы гравитации и как различные типы энергии эволюционируют с течением времени, мы можем восстановить все, что происходило в определенный момент в прошлом. Мы также можем взглянуть на различные удаленные объекты на разных расстояниях и измерить, как растянулся свет из-за расширения пространства. Каждая галактика, сверхновая, молекулярное газовое облако и т. п. — все, что поглощает или испускает свет, — расскажет космическую историю того, как расширение пространства растягивало его с момента рождения света до момента нашего наблюдения его.

Из множества независимых наблюдений мы смогли сделать вывод, из чего непосредственно состоит Вселенная. Мы сделали три больших независимых цепочек наблюдений:

  • В космическом микроволновом фоне присутствуют температурные флуктуации, которые кодируют информацию о кривизне Вселенной, нормальной материи, темной материи, нейтрино и общем содержании плотности.
  • Корреляции между галактиками на самых больших масштабах — известные как барионные акустические колебания — обеспечивают очень строгие измерения общей плотности материи, соотношения нормальной материи и темной материи и как менялась скорость расширения со временем.
  • И самые отдаленные, светящиеся стандартные свечи во Вселенной, сверхновые типа Iа, рассказывают нам о скорости расширения и темной энергии, как они менялись со временем.

Эти цепочки доказательств, все вместе, рисуют нам последовательную картину Вселенной. Они рассказывают нам, что есть в современной Вселенной, и дают нам космологию, в которой:

  • 4,9% энергии Вселенной представлена нормальной материей (протонами, нейтронами и электронами);
  • 0,1% энергии Вселенной существует в форме массивных нейтрино (которые выступают как материя в последнее время и выступали как излучение в ранние времена);
  • 0,01% энергии Вселенной существует в форме излучения (вроде фотонов);
  • 27% энергии Вселенной существует в форме темной материи;
  • 68% энергии присуще самому пространству: темная энергия.

Все это дает нам плоскую Вселенную (с кривизной 0%), Вселенную без топологических дефектов (магнитных монополей, космических струн, доменных стенок или космических текстур), Вселенную с известной историей расширения.

Если вам интересны новости науки и технологий, подпишитесь на нас в Google Новостях и Яндекс.Дзен, чтобы не пропускать новые материалы!

Вселенная расширяется

Смотришь в космос и не понимаешь, где у него конец

Уравнения общей теории относительности очень детерминистичны в этом смысле: если мы знаем, из чего состоит Вселенная сегодня, и законы гравитации, мы точно знаем, насколько важным был каждый компонент в каждый отдельно взятый промежуток прошлого. Вначале доминировали излучение и нейтрино. Миллиарды лет самыми важными компонентами были темная материя и нормальная материя. За последние несколько миллиардов лет — и это будет усугубляться с течением времени — темная энергия стала доминирующим фактором в расширении Вселенной. Это заставляет Вселенную ускоряться, и с этого момента многие люди перестают понимать происходящее.

Читайте также:  Дэдпул это вселенная людей икс

Есть две вещи, которые мы можем измерить, когда речь идет о расширении Вселенной: скорость расширения и скорость, с которой отдельные галактики, с нашей точки зрения, уходят в перспективу. Они связаны, но остаются разными. Скорость расширения, с одной стороны, говорит о том, как ткань пространства сама по себе растягивается с течением времени. Она всегда определяется как скорость на единицу расстояния, обычно задается в километрах в секунду (скорость) на мегапарсек (дистанция), где мегапарсек — это около 3,26 миллиона световых лет.

Если бы не было темной энергии, скорость расширения падала бы со временем, приближаясь к нулю, поскольку плотность вещества и излучения падала бы до нуля по мере расширения объема. Но с темной энергией эта скорость расширения остается зависимой от плотности темной энергии. Если бы темная энергия, например, была космологической постоянной, скорость расширения выровнялась бы до постоянного значения. Но при этом отдельные галактики, удаляющиеся от нас, ускорялись бы.

Скорость Вселенной

Представьте скорость расширения определенной величины: 50 км/с/Мпк. Если галактика находится от нас на расстоянии 20 Мпк, она, по-видимому, отступает от нас на скорости 1000 км/с. Но дайте ей время, и по мере расширения ткани пространства эта галактика в конечном счете будет дальше от нас. Со временем она будет вдвое дальше: 40 Мпк, и скорость удаления будет 2000 км/с. Пройдет еще времени, и она будет в 10 раз дальше: 200 Мпк, и скорость удаления 10 000 км/с. Со временем она удалится на расстояние 6000 Мпк от нас и будет удаляться на скорости 300 000 км/с, что быстрее скорости света. Чем дальше будет идти время, тем быстрее галактика будет уходить от нас. Вот почему Вселенная «ускоряется»: темп расширения падает, но скорость разбегания отдельных галактик от нас только растет.

Вселенная постоянно ускоряется, есть ли предел?

Все это согласуется с нашими лучшими измерениями: темная энергия представляет собой постоянную плотность энергии, присущую самому пространству. По мере того, как пространство растягивается, плотность темной энергии остается постоянной, и Вселенная закончит «Большим Замерзанием», когда все, что не связано воедино гравитацией (вроде нашей местной группы, галактики, Солнечной системы), будет расходиться и расходиться. Если темная энергия действительно космологическая постоянная, это расширение будет продолжаться бесконечно, пока Вселенная не станет холодной и пустой.

Когда случится большой разрыв

Но если темная энергия динамична — что возможно теоретически, но остается без наблюдаемых доказательств — все может закончиться Большим Сжатием или Большим Разрывом. В Большом Сжатии темная энергия будет ослабевать и постепенно обратит процесс расширения Вселенной, чтобы та начала сжиматься. Может даже возникнуть циклическая Вселенная, где «сжатие» дает начало новому Большому Взрыву. Если же темная энергия будет укрепляться, нас ждет другая судьба, когда связанные структуры будут разорваны постепенно нарастающим темпом расширения. Впрочем, сегодня все указывает на то, что нас ждет Большое Замерзание, когда Вселенная будет расширяться вечно.

Главные научные цели будущих обсерваторий вроде Euclid ЕКА или WFIRST NASA включают измерение того, является ли темная энергия космологической постоянной. И хотя ведущая теория говорит в пользу постоянной темной энергии, важно понимать, что могут быть возможности, не исключенные измерениями и наблюдениями. Грубо говоря, Вселенная все еще может схлопнуться, и это не исключено. Нужно больше данных.

Читайте также:  Тренировочный тест по физике вселенная 9 класс вариант 1

Источник

Мощный и таинственный Великий Аттрактор

Наша Галактика быстро движется к массивной области космического пространства.

Наша Галактика и 100 000 соседних галактик движутся к массивной точке во Вселенной, известной как «Великий Аттрактор». Эта область пространства находится от нас на расстоянии около 220 миллионов световых лет, и это то, что ученые называют гравитационной аномалией. Насколько массивен и силен этот регион? Примите во внимание, что большинство из 300 миллиардов звезд в Млечном пути намного меньше, чем наше Солнце. Считается, что Большой Аттрактор имеет массу квадриллиона солнц. Это миллион миллиардов или единица с 15-ю нулями.

Во-первых, мы должны начать с того, что Вселенная расширяется. Она расширяется с момента Большого взрыва и растет на 2,2 миллиона километров в час. Это означает, что наша Галактика Млечный Путь и наша соседняя галактика Андромеда также должны двигаться с такой скоростью. Не так ли? Не совсем.

В 1970-х годах мы создали подробные карты космического микроволнового фона Вселенной, называемого также Реликтовым излучением, и заметили, что одна сторона Млечного Пути теплее другой. Это была удивительная находка в однородной Вселенной. Эта разница в температуре была менее одной сотой градуса Фаренгейта, и всё же этого было достаточно, чтобы понять, что мы двигаемся со скоростью 600 км в секунду прямо к созвездию Центавра. Эта скорость 600 км/сек — это то, что известно как наша специфическая скорость, движение отличное от того, которое измеряется потоком Хаббла, учитывающего увеличивающееся пространство между галактиками во время естественного расширения Вселенной.

Спустя несколько лет мы поняли, что не только наша Галактика, но и всё в пределах 100 миллионов световых лет от нас тоже движется в том же направлении.

Есть только одна вещь, которая может противостоять расширению на таких огромных расстояниях, и это гравитация. Андромеда, например, при расширении Вселенной должна удаляться от нас, и всё же наша Галактика столкнется с ней через 4 миллиарда лет. Громадная масса может бороться с расширением.

Ученые сначала решили, что эта необычная скорость движения нашей Галактики была вызвана нашим местом на окраине местного сверхскопления галактик, известного как Суперкластер Девы, который мог притягивать нас. Но несмотря на то, что это суперкластер состоит из 1300 галактик, он все же не достаточно массивен, чтобы вызвать такую аномалию. Наше движение к Суперкластеру Девы связано с тем же явлением, что и наше предстоящее столкновение с Андромедой, — группы и кластеры галактик постоянно сгущаются и сливаются друг с другом естественным образом.

Почему же нам так трудно просто посмотреть и увидеть этот таинственный Великий Аттрактор?

Есть часть Вселенной вокруг нас, которая не видна, потому что наша собственная Галактика блокирует наш взгляд. Вид Млечного Пути в ночном небе, несомненно, прекрасен, но также является препятствием для астрономов, пытающихся разглядеть то, что лежит за его пределами. Эти 20% Вселенной, заблокированной нашей Галактикой, оказались именно там, где находится Великий Аттрактор, скрытый газовыми и пылевыми облаками и звездами. Эта область называется Зоной избегания. Единственный способ обойти это препятствие — это использовать рентгеновские лучи и инфракрасный свет, хотя эти методы не дают нам самых четких снимков.

Мы обнаружили, что за зоной избегания находится суперкластер галактик — теперь известный как Скопление Наугольника — в одной области Великого Аттрактора на расстоянии 150 миллионов световых лет. И за ним — еще более массивное сверхскопление размером в 650 миллионов световых лет, в котором содержится масса 10 000 галактик, таких как наш Млечный Путь. Это т.н. Сверхскопление Шепли является одной из самых больших структур в наблюдаемой Вселенной.

Читайте также:  Худ отроки во вселенной

«Суперкластер» — это не просто набор галактик, а часть пространства, где все галактики в этой области движутся к общему центру. По этому определению, Суперкластер Девы не является обособленным объектом, а является частью гораздо большей структуры — Суперкластера Ланиакея.

Великий Аттрактор считается гравитационным центром всего этого сверхскопления, куда входят наша Галактика и 100 000 других. Таким образом, Великий Аттрактор — это не само по себе небесное тело, а место, где всё остальное собирается как на дне чаши.

Другие теории считают, что Великий Аттрактор является слиянием темной энергии или областью чрезмерной плотности с огромным гравитационным притяжением. Некоторые ученые полагают, что это просто преддверие конца Вселенной. Большое сжатие приведет к схлопыванию Вселенной после нескольких триллионов лет. Она превратится в сверхмассивную черную дыру, которая поглотит всё, включая себя саму.

Значит, Великий Аттрактор представляет для нас угрозу?

Нет, не совсем. Расширение в этом случае победит сжимающиеся миры. Специфическая скорость 600 км/сек составляет всего 20% от той скорости, которая должна была бы привести к поглощению нас Великим Аттрактором. Всё, как правило, разваливается, даже огромная Ланиакея однажды разлетится и перестанет быть суперкластером. С той скоростью, с которой мы расширяемся, мы никогда не вступим в контакт с таинственным Великим Аттрактором, хотя мы и продолжаем его изучать.

Источник

Правда ли, что наша Вселенная может схлопнуться в точку? Как это будет происходить с точки зрения наблюдателя?

Отличный вопрос! Представляя себе будущее, самый дальний отрезок времени, который мы можем вообразить — конец Вселенной.

На сколько нам известно, конец Вселенной это конец самой жизни и всего, что когда-либо существовало. Не будет ни материи, ни света, ни частиц, ничего. Реальность тяжело исследовать, но не стоит слишком сильно об этом беспокоиться – если конец Вселенной и наступит, мы всё равно не будем точно знать когда, но можно предположить что это триллионы и триллионы лет, которые могут затмить еще триллион лет, а точную дату мы так и не узнаем.

Итак, о чем это мы? Ах, да! Наука строится на выводах и заключениях. Вселенная может быть бесконечной — без начала и конца, а быть может начала не было вовсе, она просто была. Вселенная может быть цикличной как и Большой взрыв, либо может бесконечно расширяться либо её и вовсе ждёт постепенной охлаждение и схлопывание.

Американский физик-терретик Митио Каку в лекции о тёмной материи рассказывает о судьбе Вселенной и её возможном конце. В конечным состоянии Вселенной материя и частицы соединятся в сингулярность черной дыры. Затем boom! Именно в таком состоянии Вселенная могла находиться до Большого взрыва. Подобное состояние может быть свидетельством бесконечных повторов — цикличности Вселенной и подтвердить старые разнообразные теории о её судьбе. Астрофизики и другие учёные дали этой гипотезе название — конформная циклическая космология. Стоит Вселенной сколлапсировать, как она возродится снова.

Кстати, мы не случайно выбрали картинку из мультсериала «Футурама». В 7 серии 6 сезона герои лицезрели Большое сжатие (тот самый сторонний наблюдатель). Спойлер — все очень красиво.

Источник

Adblock
detector