Меню

Как называется слияние вселенных

Коллапс Млечного Пути неизбежен. Что будет, когда наша галактика сольется с другой?

Млечный Путь и Туманность Андромеды через 4,3 млрд лет сольются в одну галактику. Рассказываем, что что при этом произойдет с Солнечной системой и сверхмассивными черными дырами.

Млечный путь и Галактика Андромеды

Слияние галактик — ключевой механизм их эволюции. Астрономы регулярно наблюдают его в доступной нам части Вселенной. Яркий пример — галактики Антенны в созвездии Ворона. Их обнаружил Уильям Гершель в 1785 году. Внутри нового объекта идет активное образование звезд из-за того, что межзвездный газ пришел в движение.

Млечный Путь и Туманность Андромеды — крупнейшие объекты Местной группы, куда входят полсотни галактик поменьше. Их разделяют 2,5 млн световых лет. Несмотря на такое большое расстояние, обе галактики гравитационно связаны друг с другом.

Модель столкновения

  • Млечный путь

Млечный Путь — галактика, в которой находятся Земля, Солнечная система и все отдельные звезды, видимые невооруженным глазом. Относится к спиральным галактикам с перемычкой.

Млечный Путь вместе с галактикой Андромеды (М31), галактикой Треугольника (М33) и более чем 40 карликовыми галактиками-спутниками — своими и Андромеды — образуют Местную группу галактик, которая входит в Местное сверхскопление (Сверхскопление Девы).

Галактика относится к классу спиральных галактик, это означает, что у галактики есть спиральные рукава, расположенные в плоскости диска. Диск погружен в гало сферической формы, а вокруг него располагается сферическая корона.

Солнечная система находится на расстоянии 8,5 тыс. парсек от галактического центра, вблизи плоскости Галактики (смещение к Северному полюсу Галактики составляет всего 10 парсек), на внутреннем крае рукава, носящего название рукав Ориона.

Такое расположение не дает возможности наблюдать форму рукавов визуально. Новые данные по наблюдениям молекулярного газа (СО) говорят о том, что у нашей Галактики есть два рукава, начинающиеся у бара во внутренней части Галактики.

Кроме того, во внутренней части есть еще пара рукавов. Затем эти рукава переходят в четырехрукавную структуру, наблюдающуюся в линии нейтрального водорода во внешних частях Галактики.

Галактика Андромеды — спиральная галактика, наблюдаемая в созвездии Андромеды. Эта галактика приблизительно вдвое больше нашей галактики в диаметре, содержит в несколько раз больше звезд и удалена от нее на расстояние порядка 800 килопарсек.

Это делает ее ближайшей из крупных галактик, а также крупнейшей галактикой Местной группы, тем не менее, ее масса меньше, чем у Млечного Пути.

Звёздное население этой галактики в среднем более старое, чем в нашей галактике, и более металличное. Галактика имеет множество спутников, влияющих на ее структуру, в ее истории было множество столкновений с другими галактиками. В будущем Млечный Путь столкнется и объединится с Галактикой Андромеды.

Самое раннее сохранившееся упоминание галактики относится к 964 году нашей эры, а на сегодняшний день это одна из самых изученных галактик.

Модель столкновения галактик

Как и при всех таких столкновениях, маловероятно, что объекты вроде звезд, содержащихся в каждой галактике, действительно столкнутся друг с другом из-за малой концентрации вещества в галактиках и крайней удаленности объектов друг от друга.

К примеру, ближайшая к Солнцу звезда, Проксима Центавра, находится на расстоянии примерно в 4,22 светового года от Земли, что в 277 тыс. раз больше расстояния от Земли до Солнца.

Для сравнения: если бы Солнце было размером с монету диаметром в 2,5 сантиметра, то ближайшая монета/звезда находилась бы на расстоянии 718 км.

Исходя из расчетов, звезды и газ галактики Андромеда будут видны невооруженным глазом примерно через 3 млрд лет. В результате столкновения галактики в течение примерно 1-2 млрд лет сольются в одну гигантскую галактику. Для новообразованной галактики предлагались различные названия, к примеру, Млекомеда.

Вероятность столкновения

В данный момент точно не известно, произойдет столкновение или нет. Радиальная скорость галактики Андромеды относительно Млечного Пути может быть измерена с помощью изучения доплеровского смещения спектральных линий от звезд галактики, но поперечная скорость (или «собственное движение») не может быть прямо измерена.

Таким образом известно, что галактика Андромеды приближается к Млечному Пути со скоростью около 120 км/с, но произойдёт ли столкновение или галактики просто разойдутся, выяснить пока нельзя.

На данный момент, наиболее точные косвенные измерения поперечной скорости показывают, что она не превышает 100 км/с. Это предполагает, что, по крайней мере, гало темной материи двух галактик столкнутся, даже если не произойдёт столкновения самих дисков.

Запущенный Европейским космическим агентством в 2013 году космический телескоп Gaia уточнил местоположения звезд галактики Андромеды для уточнения поперечной скорости.

Фрэнк Саммерс из Научного института космического телескопа создал компьютерную визуализацию предстоящего события, основанную на исследовании профессора Криса Мигоса из Case Western Reserve University и Ларса Хернквиста из Гарвардского университета.

Читайте также:  Контрольная работа земля во вселенной по географии 5 класс фгос с ответами

Согласно опубликованным в сентябре 2014 года данным, по одной из моделей, через 4 млрд лет Млечный Путь «поглотит» Большое и Малое Магеллановы Облака, а через 5 млрд лет сольется с Туманностью Андромеды. По другим расчетам, галактики столкнутся по касательной через 4,7 млрд лет.

Такие столкновения — относительно обыкновенное явление: туманность Андромеды, к примеру, столкнулась в прошлом, по крайней мере, с одной карликовой галактикой, как и наша галактика.

Возможные последствия столкновения для Солнечной системы

Проявления этого столкновения будут происходить крайне медленно и могут быть вообще не замечены с Земли невооруженным глазом. Вероятность какого-либо непосредственного воздействия на Солнце и планеты мала.

Но, с другой стороны, не исключено, что во время столкновения Солнечная система силами гравитации будет целиком выброшена из новой галактики и станет странствующим межгалактическим объектом.

Это не вызовет негативных последствий для нашей системы, если не считать постепенного исчезновения красивого звездного неба. От межгалактической радиации, возможно, сможет защитить нас магнитосфера Солнца.

Вероятность вылета из диска Млечного Пути во время первого этапа столкновения сегодня оценивается в 12%, а вероятность захвата Андромедой в 3%.

К тому времени гораздо большее значение для жизни на Земле будет иметь эволюция Солнца и последующее превращение его в красного гиганта через 5-6 млрд лет.

Новые исследования предполагаемого слияния

Недавно ученые из Италии провели новое моделирование слияния Млечного Пути и Туманности Андромеды, уточнив их параметры. Как отмечают авторы, результат очень сильно зависит от массы невидимой части галактик — гало.

Считается, что оно состоит из темной материи, недоступной для наших приборов. Размеры гало неизвестны, из-за чего сложно определить массу галактик. Разброс значений — 21-73 размера галактического диска.

Неизвестно даже, где точно кончаются Млечный Путь и Андромеда, пересекаются ли их гало. На итог также влияют скорости собственного движения галактик и плотность межгалактической среды, в которой они летят.

По прогнозам авторов галактики сблизятся через 4,3 млрд лет и еще спустя 10 млрд лет начнут сливаться. Это дольше, чем по предыдущим расчетам.

К тому времени Солнце уже превратится в красный гигант, испепелит ближайшие планеты и погаснет. Землянам придется спасаться на окраинных планетах-гигантах, но гибель своей Галактики они смогут наблюдать.

Что касается сверхмассивных черных дыр, то сперва они будут кружиться по спирали во внутренней части Милкомеды, и только через 16,6 млрд лет сольются.

Из-за гигантской массы объектов произойдет мощный выброс гравитационного излучения. Волны от этого события смогут зафиксировать мощные интерферометры типа наземного будущего SKA или космического LISA.

Источник

Параллельные вселенные. Как их создают

Многие ученые со всего мира придерживаются теории о существовании параллельных миров, в которых мы можем также жить. В этой статье я расскажу о параллельных мирах и насколько оправдана с научной точки зрения данная теория. С вами канал “Все обо всем”.

Суперпозиция.

Для начала нам нужно разобраться о квантовых частицах, которые уже десятки лет изучают ученые. Давайте представим электрон, который может находиться в двух местах одновременно , физики называют данное свойство суперпозицией двух состояний. В момент, когда мы каким-то образом устанавливаем конкретное местоположение электрона, например, попытаемся воздействовать на него другим электроном, из квантового объекта электрон превратится в обычный объект. Но как это возможно? Ведь электрон сразу в двух положениях и вдруг в определенный момент он принял лишь одно из возможных состояний .

Теория параллельных вселенных.

Впервые решение данной квантовой загадки предложил американский физик Хью Эверетт. Его интерпретация многомировой теории говорит о том, что электрон одновременно может существовать в двух состояниях, а конкретное положение напрямую зависит от наблюдателя. Сам наблюдатель превращается в квантовый объект и существует в двух состояниях, в одном из них он находится в первом положении, а в другом во втором. Таким образом реальность разделилась на две параллельные друг другу и местонахождение наблюдателя определить невозможно .

Создание параллельных миров.

Деление миров или реальностей не ограничиваются двумя, это значит, что мир может разделиться на большее количество реальностей , чем две. Наблюдатель, попадая в один из миров, не может из него выйти , как и переместиться в параллельный, но есть другая теория, которая говорит о том, что в другие вселенные можно попасть через черные дыры , выйдя из белой дыры, но это уже тема отдельной статьи.

Чтобы было легче понять эту теорию, я приведу пример. Представьте, что вы вышли со школы и пришли к месту, где дороги разветвляются на 3 другие, но все они ведут к одному месту – вашему дому. Вы захотели пойти вместе с друзьями и пошли направо, но эта дорога чуть длиннее остальных. В этот момент вселенная как бы разделилась на три . В одной из них вы пошли один и зашли по пути в магазин, купив шоколадку, чтобы съесть вечером, в другой вы пошли через гаражи, хоть этот путь может быть опаснее других , но он самый короткий. Во всех разделившихся вселенных вы пошли разными дорогами. Возможно в одной из вселенных, сделав правильный выбор вы сказочно разбогатели и заняли строчку в списке Форбс, а в другой случилось все наоборот.

Читайте также:  Спарк герой вселенной персонажи

Доказательство параллельных вселенных.

В доказательство данной теории, можно привести в пример мысленный эксперимент с котом Шредингера. Кота помещают в коробку, в которой находятся счетчик Гейгера, небольшое количество радиоактивного вещества, яд и молоток с механизмом, который сработает если будет обнаружена радиация и разобьет колбу с ядом. С учетом того, что период полураспада радиоактивных веществ равен ½, это значит, что молоток разобьет яд с 50% вероятностью . Во время проведения этого эксперимента, можно сказать, что кот жив и мертв одновременно, потому что радиоактивное вещество могло распасться и не могло. В момент, когда наблюдатель открывает коробку, он сливается с котом и образует 2 состояния, которые не пресекаются, что приводит к созданию двух вселенных , в которых есть и живой, и мертвый кот. О данном эксперименте я рассказал в своей статье “Эффект Манделы, мы помним то, чего никогда не было” .

Теорию Хью Эверетта поддерживают многие ученые физики, они считают, что параллельные миры существуют и они наделены разными характеристиками. Если ученый прав, то подобные разделения реальности происходят с частотой, которая может достигать бесконечности . Постоянное возникновение параллельных миров звучит достаточно странно, но это естественным путем следует из математических расчетов.

А что вы думаете по поводу возникновения параллельных вселенных, и насколько правдивой вы считаете эту теорию?

Если вам понравилась статья и вы хотите отблагодарить автора, то не забудьте поставить лайк и подписаться на канал.

Источник

Параллельные вселенные — красивая теория или реальность?

В 1954 году молодой кандидат в докторантуру Принстонского университета по имени Хью Эверетт III придумал радикальную идею: что если существуют параллельные вселенные, подобные нашей. Все эти вселенные связаны с нашей и наша Вселенная отделяется от других. Внутри этих параллельных вселенных наши войны имели разные результаты, чем те, которые мы знаем. Виды, которые вымерли в нашей вселенной, эволюционировали и адаптировались в других. В других вселенных мы, люди, могли исчезнуть.

Эта мысль пугает разум, и все же она по-прежнему понятна. Понятия параллельных вселенных, которые напоминают наши собственные, появились в произведениях научной фантастики и использовались в качестве объяснений для метафизики. Но почему молодой потенциальный физик, возможно, рискует своей будущей карьерой, создав теорию о параллельных вселенных?

Теорией множественности миров Эверетт пытался ответить на довольно липкий вопрос, связанный с квантовой физикой: почему квантовая материя ведет себя беспорядочно? Квантовый уровень — это самая молодая наука, изучающая самый крохотный уровень организации материи, обнаруженный до сих пор. Изучение квантовой физики началось в 1900 году, когда физик Макс Планк впервые представил концепцию в научный мир. Изучение излучения Планком привело к некоторым необычным выводам, которые противоречили классическим физическим законам. Эти данные свидетельствуют о том, что во Вселенной действуют другие законы, действующие на более глубоком уровне, чем тот, который мы знаем.

Принцип неопределенности Гейзенберга

Физики, изучающие квантовый уровень, заметили некоторые странные вещи в этом крошечном мире. Во-первых, частицы, которые существуют на этом уровне, имеют способность принимать разные формы произвольно. Например, ученые наблюдали фотоны — крошечные пакеты света, действующие как частицы и волны. Даже один фотон демонстрирует это изменение формы. Представьте, если бы вы выглядели и действовали как сплошной человек, когда друг взглянул на вас, но когда он снова оглянулся, вы бы приняли газообразную форму.

Это стало известно как принцип неопределенности Гейзенберга. Физик Вернер Гейзенберг предположил, что, наблюдая квантовую материю, мы влияем на поведение этого вещества. Таким образом, мы никогда не можем быть полностью уверены в природе квантового объекта или его параметров, таких как скорость и местоположение.

Эта идея поддерживается копенгагенской интерпретацией квантовой механики. По словам датского физика Нильса Бора, эта интерпретация говорит о том, что все квантовые частицы не существуют ни в одном состоянии, ни во всех возможных состояниях сразу. Сумма возможных состояний квантового объекта называется его волновой функцией. Состояние объекта, существующего во всех его возможных состояниях сразу, называется суперпозицией.

Читайте также:  Мимо вселенной everest best place acoustic

Согласно Бору, когда мы наблюдаем квантовый объект, мы влияем на его поведение. Наблюдение нарушает суперпозицию объекта и, по сути, заставляет объект выбирать одно состояние из его волновой функции. Эта теория объясняет, почему физики проводили противоположные измерения одного и того же квантового объекта: объект выбирал разные состояния при различных измерениях.

Интерпретация Бора была широко принята и по-прежнему учитывается большим количеством ученых квантового сообщества. Но в последнее время теория множественности миров Эверетта приобретает серьезное внимание.

Теория множественности миров

Молодой Хью Эверетт согласился с тем, что высказал очень уважаемый физик Нильс Бор о квантовом мире. Он согласился с идеей суперпозиции, а также с понятием волновых функций. Но Эверетт не согласился с Бором в одном жизненно важном отношении.

Для Эверетта измерение квантового объекта не приводит его к одному понятному состоянию. Вместо этого измерение квантового объекта приводит к фактическому расколу во Вселенной. Вселенная буквально дублируется, разбиваясь на одну вселенную для каждого возможного результата измерения. Например, говорят, что волновая функция объекта является как частицей, так и волной. Когда физик измеряет частицу, возможны два возможных результата: она будет либо измеряться как частица, либо как волна. Это различие делает теорию множественности миров Эверетта конкурентом копенгагенской интерпретации объяснения квантовой механики.

Когда физик измеряет объект, Вселенная делится на две отдельные вселенные, чтобы учесть каждый из возможных результатов. Итак, ученый в одной вселенной обнаруживает, что объект был измерен в волновой форме. Тот же ученый в другой вселенной измеряет объект как частицу. Это также объясняет, как одна частица может быть измерена более чем в одном состоянии.

Как бы удивительно это не звучало, интерпретация Эверетта имеет последствия вне квантового уровня. Если действие имеет более чем один возможный результат, то, если теория Эверетта верна, вселенная распадается, когда это действие будет предпринято. Это справедливо даже тогда, когда человек решает не предпринимать никаких действий.

Это означает, что если вы когда-либо оказались перед выбором, то во вселенной, параллельной нашей, вы сделали иной выбор. Это лишь одна из причин, по которой некоторые считают, что интерпретация множественности миров вызывает беспокойство.

Еще один тревожный аспект этой теории заключается в том, что это подрывает наше понятие времени как линейное. Представьте себе временную линию, показывающую историю второй мировой войны. Вместо прямой линии, показывающей заметные события, идущие вперед, временная линия, основанная на интерпретации множественности миров, покажет каждый возможный результат каждого предпринятого действия. Оттуда последует дальнейший хронологический анализ всех возможных результатов предпринятых действий.

Но человек не может знать о своих других личностях — или даже о его смерти, — которые существуют в параллельных вселенных. Итак, как мы можем узнать, правильна ли теория множественности миров? Уверенность в том, что теоретическая интерпретация возможна, возникла в конце 1990-х годов из мысленного эксперимента — воображаемого эксперимента, который теоретически доказывал или опровергал идею, называемую квантовым самоубийством.

Этот мысленный эксперимент возобновил интерес к теории Эверетта, которая на протяжении многих лет считалась мусором. Поскольку множественность миров оказалась возможной, физики и математики стремились исследовать последствия этой теории в глубине. Но интерпретация многих миров — не единственная теория, которая стремится объяснить вселенную. И это не единственное, что предполагает наличие вселенных параллельных нашей.

Параллельные Вселенные: струны и строки

Теория многих миров и копенгагенская интерпретация — не единственные конкуренты, пытающиеся объяснить базовый уровень Вселенной. На самом деле квантовая механика — это даже не единственное поле в физике, которое ищет такое объяснение. Теории, появившиеся после изучения субатомной физики, по-прежнему остаются теориями. Это привело к тому, что поле исследования было разделено во многом так же, как мир психологии. Теории имеют сторонников и критиков, а также психологические рамки, предложенные Карлом Юнгом, Альбертом Эллисом и Зигмундом Фрейдом.

Поскольку их наука была развита, физики занимаются обратным проектированием Вселенной — они изучили, что можно наблюдать, если двигаться все к меньшим уровням физического мира. Делая это, физики пытаются достичь конечного и самого базового уровня. Надеюсь, именно этот уровень послужит основой для понимания всего остального.

Следуя своей знаменитой теории относительности, Альберт Эйнштейн всю оставшуюся жизнь искал тот последний уровень, который отвечал бы на все физические вопросы. Физики ссылаются на эту фантомную теорию как на теорию всего. Квантовые физики считают, что они находятся на пути к поиску этой окончательной теории. Но другая область физики считает, что квантовый уровень не является наименьшим уровнем, поэтому он не может обеспечить теорию всего.

Источник

Adblock
detector