Вселенная сегодня
Новости космоса и астрономии
Внутренняя часть Солнца. Фотография предоставлена: NASA.
Отсюда с Земли, Солнце похоже на гладкий шар огня, и до открытия солнечных пятен космическим кораблем Galileo, астрономы даже полагали, что оно было идеальным шаром без дефектов. Тем не менее, мы теперь знаем, что Солнце, как Земля, на самом деле состоят из нескольких слоев, каждый из которых служит своей собственной цели. Это такая структура Солнца, которая приводит в действие эту массивную печь и поставщика всей земной жизни и энергии.
Из чего состоит Солнце?
Если бы вы могли разделить Солнце на части, и сравнить эти разные элементы, вы бы обнаружили, что Солнце состоит из водорода (74%) и гелия (около 24%). Астрономы считают, что любой элемент тяжелее гелия будет металлом. Оставшееся количество Солнца составляет железо, никель, кислород, кремний, серу, магний, углерод, неон, кальций и хром. Фактически, Солнце имеет 1% кислорода; а все остальное — это оставшийся 1%.
Остатки сверхновой NR 0509-67.5. Сверхновые предоставляли более тяжелые элементы в Солнце. Фотография предоставлена: NASA/ESA/CXC.
Откуда появились эти элементы? Водород и гелий появились от Большого Взрыва. В ранние моменты Вселенной, первый элемент, водород, образовался из супа элементарных частиц. Давление и температуры были все еще сильны, что вся Вселенная имела одни и те же условия как в ядре звезды. Водород синтезировался в гелий, пока Вселенная не охладилась достаточно, что эта реакция не могла бы больше происходить. Соотношения водорода и гелия, которые мы видим во Вселенной в наши дни, было создано в эти первые моменты после Большого Взрыва.
Другие элементы были созданы в других звездах. Звезды постоянно синтезируют водород в гелий в своих ядрах. Как только водород в ядре выработается, они переключатся на ядерный синтез все более и более тяжелых элементов, как гелий, литий, кислород. Большинство более тяжелых металлов, которые мы видим в Солнце образовались в других звездах в конце их жизней.
Самые тяжелые элементы, как золото и уран, образовались, когда звезды, во много раз более массивные нашего Солнца, детонировали во взрывах сверхновых. В доли секунды, когда образовывалась черная дыра, элементы сталкивались вместе при интенсивном тепле и давлении для образования самых тяжелых элементов. Взрыв распространил эти элементы по всему региону, где они могли бы способствовать образованию новых звезд.
Наше Солнце состоит из элементов, оставшихся от Большого Взрыва, элементов, образовавшихся из умирающих звезд, и элементов, созданных в сверхновых. Это довольно удивительно.
Цепочка протон-протон, которая питает ядерный синтез внутри ядра нашего Солнца. Предоставлено: Ian O’Neill.
Хотя Солнце главным образом просто шар из водорода и гелия, оно на самом деле разбито на отчетливые слои. Слои Солнца были созданы, потому что температуры и давления увеличиваются, когда вы движетесь к центру Солнца. Водород и гелий ведут себя по-разному при различных изменяющихся условиях.
Давайте начнем с самого внутреннего слоя Солнца, ядра. Это самый центр Солнца, где температуры и давления такие высокие, что может происходить ядерный синтез. Солнце объединяет водород в атомы гелия, и эта реакция отдает свет и тепло, которые мы видим здесь на Земле. Плотность ядра в 150 раз больше плотности воды, а температуры, как полагают, доходят до 13,600,000 градусов Кельвина.
Астрономы полагают, что ядро Солнца простирается от центра до около 0.2 солнечного радиуса. И внутри этого региона температуры и давления такие высокие, что атомы водорода разрываются на части для образования отдельных протонов, нейтронов и электронов. При всех этих свободно плавающих частицах Солнце способно преобразовывать их в атомы гелия.
Эта реакция экзотермическая. Это означает, что реакция отдает огромное количество тепла — 3.89 х 10 33 эрг энергии каждую секунду. Давление света всей этой энергии, текущей из ядра Солнца такое, что останавливает его от стягивания внутрь себя.
Массивный выброс корональной массы. Эта фотография показывает размер Земли для сравнения в левом верхнем углу. Предоставлено: NASA / SDO / J. Major.
Радиационная зона Солнца начинается на границе ядра (0.2 солнечного радиуса), и простирается до 0.7 радиуса. Внутри радиационной зоны солнечное вещество достаточно горячее и плотное для того, чтобы тепловое излучение передавало тепло ядра за пределы Солнца.
Ядро Солнца — это там, где происходят реакции ядерного синтеза — протоны сливаются вместе для создания атомов гелия. Эта реакция производит огромное количество гамма-излучения. Эти фотоны энергии испускаются, поглощаются и затем испускаются снова различными частицами в радиационной зоне.
Траектория, которая требуется фотонам, называется «случайное блуждание». Вместо движения прямого луча света, они путешествуют зигзагами, в конечном счете достигая поверхности Солнца. Фактически, отдельному фотону может потребоваться 200,000 лет, чтобы совершить путешествие через радиационную зону Солнца. Поскольку они переходят от частицы к частице, фотоны теряют энергию. Это хорошо, так как мы бы не хотели получать только гамма-излучение, струящееся из Солнца. Как только эти фотоны достигают космоса, им требуется примерно 8 минут, чтобы достичь Земли.
Большинство звезд будут иметь радиационные зоны, но их размер зависит от размера звезды. Маленькие звезды будут иметь гораздо более маленькие зоны, а конвективная зона займет большую часть звезды. Самые маленькие звезды могут не иметь радиационной зоны вовсе, при конвективной зоне, достигающей всего пути до ядра. Самые большие звезды имели бы обратную ситуацию, где радиационная зона занимает весь путь до поверхности.
Снаружи радиационной зоны есть еще слой, называемый конвективная зона, где тепло изнутри Солнца переносится в столбах горячего газа.
Большинство звезд имеют конвективную зону. В случае Солнца, она начинается от 70% солнечного радиуса до внешней поверхности (фотосферы). Газ глубже внутри звезды нагревается так, что поднимается, как пузыри воска в лавовой лампе. Когда он достигает поверхности, газ теряет часть тепла, охлаждается и погружается обратно к центру, чтобы забрать больше тепла. Еще пример — горшок кипящей воды на печи.
Солнечный протуберанец и солнечное пятно 1271. Предоставлено: John Chumack.
Поверхность Солнца выглядит гранулированной. Эти гранулы являются столбами горячего газа, которые несут тепло к поверхности. Они могут быть более 1000 км в ширину, и обычно длятся 8-20 минут до рассеивания.
Астрономы полагают, что звезды с низкой массой, как красные карлики, имеют конвективную зону, которая распространена до ядра. В отличие от Солнца, они не имеют радиационной зоны вовсе.
Слой Солнца, который мы можем видеть с Земли, называется фотосфера. Ниже фотосферы, Солнце становится непрозрачным для видимого света, и астрономы должны использовать другие методы для зондирования внутренней части. Температура фотосферы около 6000 Кельвин, и отдает желто-белый свет, который мы видим.
Выше фотосферы находится атмосфера Солнца. Возможно, самая эффектная — это корона, которая видна во время полного солнечного затмения.
Схема Солнца. Предоставлено: NASA.
Это схематическое изображение Солнца, изначально разработанное NASA для образовательных целей.
- Видимое, инфракрасное и ультрафиолетовое излучение (Visible, IR and UV radiation) — Свет, который мы видим приходящим, виден, но если вы закроете глаза и просто почувствуете тепло, вот инфракрасное излучение. А свет, который дает вам загар — это ультрафиолетовое излучение. Солнце производит все эти длины волн одновременно.
- Фотосфера 6000 Кельвин (Photosphere 6000 K) — Фотосфера — это поверхность Солнца. Это регион, где свет изнутри наконец достигает космоса. Температура 6000 Кельвин — то же, что 5700 градусов Цельсия.
- Радио эмиссия (Radio emissions) — В дополнение к видимому, инфракрасному и ультрафиолетовому, Солнце также отдает радио эмиссию, которая может быть обнаружена радио телескопом. Эта эмиссия растет и падает в в зависимости от числа солнечных пятен на поверхности Солнца.
- Корональная дыра (Coronal Hole) — Это регионы на Солнце, где корона холоднее, темнее и имеет менее плотную плазму.
- 2100000 Кельвин — Это температура радиационной зоны Солнца.
- Конвективная зона / Турбулентная конвекция (Convective zone/Turbulent convection) — Это регион Солнца, где тепло от ядра передается через конвекцию. Теплые столбы плазмы поднимаются к поверхности, выпускают свое тепло, а затем падают обратно, чтобы нагреться снова.
- Корональные петли (Coronal loops) — Это петли плазмы в атмосфере Солнца, которые следуют по магнитным линиям. Они выглядят как большие арки, растягивающиеся от поверхности Солнца на сотни тысяч километров.
- Ядро (Core) — Это сердце Солнца, где температуры и давления такие высокие, что может происходить ядерный синтез. Вся энергия, исходящая от Солнца, происходит из ядра.
- 14,500,000 Кельвин. Температура ядра Солнца.
- Радиационная зона (Radiative Zone) — Регион Солнца, где энергия может быть передана только через радиацию. Одному фотону может понадобиться 200,000 лет, чтобы достичь из ядра через радиационную зону до поверхности и в космос.
- Нейтрино (Neutrinos) — Нейтрино являются частицами почти без массы, испускаемыми из Солнца как часть реакций ядерного синтеза. Миллионы нейтрино проходят через ваше тело каждую секунду, но они не взаимодействуют, так что вы не чувствуете их.
- Хромосферная вспышка (Chromospheric Flare) — Магнитное поле Солнца может закручиваться, а затем резко обрываться в различных конфигурациях. Когда это происходит, могут быть мощные рентгеновские вспышки, выделяющиеся с поверхности Солнца.
- Петля магнитного поля (Magnetic Field Loop) — Магнитное поле Солнца простирается над его поверхностью, и может быть видно, потому что горячая плазма в атмосфере следует по магнитным линиям.
- Солнечные пятна (Spot– A sunspot) — Это области на поверхности Солнца, где линии магнитного поля пронизывают поверхность Солнца, и они относительно холоднее, часто в форме петли.
- Энергичные частицы (Energetic particles) — Там могут быть энергичные частицы, испускаемые с поверхности Солнца для создания солнечного ветра. В солнечных бурях, энергичные протоны могут ускоряться почти до скорости света.
- Рентгеновские лучи (X-rays) В дополнение к длинам волн, которые мы можем видеть, есть невидимые рентгеновские лучи, появляющиеся из Солнца, особенно во время вспышек. Атмосфера Земли защищает нас от этого излучения.
- Яркие пятна и недолгие магнитные регионы (Bright spots and short-lived magnetic regions) — Поверхность Солнца имеет гораздо более яркие и более тусклые пятна, вызванные изменением температур. Температуры меняются от постоянно сдвигающегося магнитного поля.
Название прочитанной вами статьи «Части Солнца».
Источник
Как называется центральная зона солнца где при высоком давлении
V. СОЛНЦЕ И ЗВЕЗДЫ
§ 21 Солнце — ближайшая звезда
21.1 Энергия и температура Солнца
Солнце — центральное тело Солнечной системы является типичным представителем звезд, наиболее распространенных во Вселенной тел. Масса Солнца составляет 2 • 10 30 кг. Как и многие другие звезды, Солнце представляет собою огромный шар, который состоит из водородно-гелиевой плазмы и находится в равновесии в поле собственного тяготения. Изучение физических процессов, происходящих на Солнце, имеет важное значение для астрофизики, поскольку эти процессы свойственны, очевидно, и другим звездам, но только на Солнце мы можем наблюдать их достаточно детально .
Солнце излучает в космическое пространство колоссальный по мощности поток излучения, который в значительной мере определяет физические условия на Земле и других планетах, а также в межпланетном пространстве. Земля получает всего лишь одну двухмиллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре. Все источники энергии, которые использует человечество, связаны с Солнцем. Тепло и свет Солнца обеспечили развитие жизни на Земле, формирование месторождений угля, нефти и газа.
Количество приходящей от Солнца на Землю энергии принято характеризовать солнечной постоянной.
Солнечная постоянная — поток солнечного излучения, который приходит на поверхность площадью 1 м 2 , расположенную за пределами атмосферы перпендикулярно солнечным лучам на среднем расстоянии Земли от Солнца (1 а.е.).
Солнечная постоянная равна 1,37 кВт/м 2 . Умножив эту величину на площадь поверхности шара, радиус которого 1 а. е., определим полную мощность излучения Солнца, его светимость, которая составляет 4 • 10 26 Вт.
Знание законов излучения позволяет определить температуру фотосферы Солнца. Энергия, излучаемая нагретым телом с единицы площади, определяется законом Стефана— Больцмана:
Светимость Солнца известна, остается узнать, какова площадь поверхности Солнца.
С Земли мы видим Солнце как небольшой диск, край которого достаточно четко определяет фотосфера (в переводе с греческого— «сфера света»). Так называется тот слой, от которого приходит практически все видимое излучение Солнца. Он имеет толщину всего 300 км и выглядит как поверхность Солнца. Угловой диаметр солнечного диска примерно 30′. Зная расстояние до Солнца (150 000 000 км), нетрудно вычислить его линейные размеры и площадь поверхности. Радиус Солнца равен приблизительно 700 000 км. Теперь можно узнать, какова температура фотосферы. Светимость Солнца
где σ = 5,67 · 10 -8 Вт/(м 2 · К 4 ). Отсюда
Подставивв эту формулу численные значения входящих в нее величин, получим Т = 6000 К. Очевидно, что такая температура может поддерживаться лишь за счет постоянного притока энергии из недр Солнца.
21.2 Состав и строение Солнца
Для изучения Солнца используются телескопы особой конструкции — башенные солнечные телескопы (рис. 5.1). Система зеркал непрерывно поворачивается вслед за Солнцем и направляет его лучи вниз на главное зеркало, а затем они попадают в спектрографы или другие приборы, с помощью которых проводятся исследования Солнца. Благодаря большому фокусному расстоянию солнечных телескопов (до 90 м) можно получить изображение Солнца диаметром до 80 см и детально изучать происходящие на нем явления. Они лучше видны на спектрогелиограммах — снимках Солнца, которые сделаны в лучах, соответствующих спектральным линиям водорода, кальция и некоторых других элементов.
Важнейшую информацию о физических процессах на Солнце дает спектральный анализ (рис. 5.2). Именно в спектре Солнца Йозеф Фраунгофер еще в 1814 г. обнаружил и описал линии поглощения, по которым, как стало ясно почти полвека спустя, можно узнать состав его атмосферы. В настоящее время в солнечном спектре зарегистрировано более 30 000 линий, принадлежащих 72 химическим элементам. Спектральными методами гелий (от греческого «гелиос» — солнечный) был сначала открыт на Солнце и лишь затем обнаружен на Земле. Все последующие попытки найти линии других неизвестных элементов не увенчались успехом, но были тем не менее не бесполезны. Они во многом способствовали развитию теории спектрального анализа, которая важна как для астрофизики, так и для физики в целом.
Современные данные о химическомсоставе Солнца таковы: водород составляет около 70% солнечной массы, гелий — более 28%, остальные элементы — менее 2%. Количество атомов этих элементов в 1000 раз меньше, чем атомов водорода и гелия. Более полно соотношение числа атомов различных элементов представлено на рисунке 5.3.
Вещество Солнца сильно ионизовано: атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму. Средняя плотность солнечного вещества примерно 1400 кг/м . Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.
Используя закон всемирного тяготения и газовые законы, можно рассчитать условия внутри Солнца, построить модель «спокойного» Солнца. Оно находится в равновесии, поскольку в каждом его слое действие сил тяготения, которые стремятся сжать Солнце, уравновешивается действием сил внутреннего давления газа. Действием гравитационных сил в недрах Солнца создается огромное давление. Сделаем приближенный расчет его величины для слоя, лежащего на расстоянии R/2 от центра Солнца. При этом будем считать, что плотность вещества внутри Солнца всюду равна средней.
Сила тяжести на этой глубине определяется массой вещества, заключенной в радиальном столбике, высота которого R/2, площадь S, а также ускорением свободного падения на поверхности сферы радиусом R/2. Масса вещества в этом столбике равна:
а ускорение на расстоянии R/2 (согласно закону всемирного тяготения) выражается так:
так какобъем этой сферы составляет 1/8 от объема всего Солнца. Подставив необходимые данные в формулу р = mg/S, получим, что давление равно примерно 6,6 • 10 13 Па, т. е. в 1 млрд раз превосходит нормальное атмосферное давление. Для вычисления температуры воспользуемся уравнением Клапейрона—Менделеева: pV = RT . Поскольку
= ρ , Т =
где R — универсальная газовая постоянная, а М — молярная масса водородной плазмы. Если считать, что в состав вещества входят в равном количестве протоны и электроны, то она примерно равна 0,5 • 10 -3 кг/моль. Тогда Т = 2,8 • 10 6 К. Более точные расчеты, проведенные с учетом изменения плотности с глубиной, дают результаты, лишь незначительно отличающиеся от полученных выше: p = 6,1 • 10 13 Па, Т = 3,4 • 10 6 К. Согласно современным данным, температура в центре Солнца достигает 15 млн К, давление 2 • 10 18 Па, а плотность вещества значительно превышает плотность твердых тел в земных условиях: 1,5 • 10 5 кг/м 3 , т.е. в 13 раз больше плотности свинца. Тем не менее применение газовых законов к веществу, находящемуся в этом состоянии, оправдано тем, что оно ионизовано. Размеры атомных ядер, потерявших свои электроны, примерно в 10 тыс. раз меньше размеров самого атома, а размеры самих частиц довольно малы по сравнению с расстояниями между ними. Это условие, которому должен удовлетворять идеальный газ, для смеси ядер и электронов, составляющих вещество внутри Солнца, выполняется несмотря на его высокую плотность.
При высокой температуре в центральной части Солнца протоны, которые преобладают в составе солнечной плазмы, имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой. В результате такого взаимодействия происходит термоядерная реакция: четыре протона образуют альфа-частицу (ядро гелия) (рис. 5.4).
В процессе реакции высвобождается определенная порция энергии. Кинетическая энергия, которую приобретают образующиеся в ходе реакции частицы, поддерживает высокую температуру плазмы и тем самым создаются условия для продолжения термоядерного синтеза. Энергия гамма-квантов обеспечивает излучение Солнца.
Из недр Солнца наружу этаэнергия передается двумя способами: излучением, т. е. самими квантами, и конвекцией, т. е. веществом. Выделение энергии и ее перенос определяют внутреннее строение Солнца:
ядро — центральная зона, где при высоком давлении и температуре происходят термоядерные реакции;
«лучистая» зона , где энергия передается наружу от слоя к слою в результате последовательного поглощения и излучения квантов;
наружнаяконвективная зона , где энергия от слоя к слою переносится самим веществом в результате перемешивания (конвекции).
Каждая из этих зон занимает примерно 1/3 солнечного радиуса (рис. 5.5).
Сразу за конвективной зоной начинается атмосфера, которая простирается далеко за пределы видимого диска Солнца. Ее нижний слой — фотосфера — воспринимается как поверхность Солнца. Верхние слои атмосферы непосредственно не видны и могут наблюдаться либо во время полных солнечных затмений, либо из космического пространства, либо при помощи специальных приборов с поверхности Земли.
21.3 Атмосфера Солнца
Фотосфера — самый нижний слой атмосферы Солнца, в котором температура довольно быстро убывает от 8000 до 4000 К. Следствием конвективного движения вещества в верхних слоях Солнца является своеобразный вид фотосферы — грануляция (рис. 5.6). Фотосфера как бы состоит из отдельных зерен — гранул, размеры которых составляют в среднем несколько сотен (до 1000) километров. Гранула — это поток горячего газа, поднимающийся вверх. В темных промежутках между гранулами находится более холодный газ, опускающийся вниз. Каждая гранула существует всего 5—10 мин, затем на ее месте появляется новая, которая отличается от прежней по форме и размерам. Общая наблюдаемая картина при этом не меняется. Вещество фотосферы нагревается за счет энергии, поступающей из недр Солнца, а излучение, которое уходит в межпланетное пространство, уносит энергию, поэтому наружные слои фотосферы охлаждаются.
В самых верхних слоях фотосферы плотность вещества составляет 10 -3 — 10 -4 кг/м 3 . Здесь в условиях минимальной для Солнца температуры оказывается возможным существование нейтральных атомов водорода и даже простейших молекул и радикалов Н2, ОН, СН.
Над фотосферой располагается хромосфера («сфера цвета»). Красновато-фиолетовое кольцо хромосферы можно видеть в те моменты, когда диск Солнца закрыт Луной во время полного солнечного затмения (рис. 5.7). В хромосфере вещество имеет температуру в 2—3 раза выше, чем в фотосфере. Здесь, как и внутри Солнца, оно представляет собой плазму, только меньшей плотности. Толщина хромосферы 10 — 15 тыс. км, а далее на миллионы километров (несколько радиусов Солнца) простирается солнечная корона.
Для короны, которую можно наблюдать во время полных солнечных затмений как жемчужно-серебристое сияние, характерна лучистая структура с множеством сложных деталей — дуг, шлемов и т. д. (рис. 5.7). Температура в короне повышается до 1—2 млн. К, а затем очень медленно снижается. Солнечная корона (рис. 5.8) явилась для астрофизики уникальной природной лабораторией, в которой удается наблюдать поведение вещества в условиях, недостижимых на Земле. Высокая температура короны обеспечивает полную ионизацию легких элементов, а у более тяжелых сохраняются электроны, находящиеся на самых глубоких электронных оболочках. Высокоионизованную плазму короны часто называют электронным газом, имея в виду, что число электронов, потерянных атомами, существенно превосходит число образовавшихся при этом положительных ионов.
Плотность веществапо мере удаления от Солнца постепенно уменьшается, но потоки плазмы из короны («солнечный ветер») растекаются по всей планетной системе. Скорость этих потоков в окрестностях Земли обычно составляет 400—500 км/с, но у некоторых может достигать 1000 км/с. Основными составляющими солнечного ветра являются протоны и электроны, значительно меньше альфа-частиц (ядер гелия) и других ионов. Наша планета фактически находится в солнечной короне, поэтому многие геофизические явления испытывают на себе влияние процессов, происходящих на Солнце, в особенности солнечной активности.
21.4 Солнечная активность
Как правило, в атмосфере Солнца наблюдаются многообразные проявления солнечной активности, характер протекания которых определяется поведением солнечной плазмы в магнитном поле — пятна, вспышки, протуберанцы и т. п. Наиболее известными из них являются солнечные пятна, открытые еще в начале XVII в. во время первых наблюдений при помощи телескопа. По изменению положения пятен на диске Солнца было обнаружено, что оно вращается. Наблюдения показали, что угловая скорость вращения Солнца убывает от экватора к полюсам, а время полного оборота вокруг оси возрастает с 25 суток (на экваторе) до 30 (вблизи полюсов).
Общее магнитное поле Солнца по форме линий магнитной индукции отчасти напоминает земное. Пятна появляются в тех сравнительно небольших областях фотосферы Солнца, где магнитное поле усиливается в несколько тысяч раз по сравнению с общим фоном, и его индукция может достигать 0,4—0,5 Тл. Усиление магнитного поля, которое охватывает также лежащие выше области хромосферы и короны, является характерным признаком активной области (центра активности).
Сначала пятна наблюдаются как маленькие темные участки диаметром 2000—3000 км. Большинство из них в течение суток пропадают, однако некоторые увеличиваются в десятки раз. Такие пятна могут образовывать большие группы и существовать, меняя форму и размеры, на протяжении нескольких месяцев, т. е. нескольких оборотов Солнца. У крупных пятен вокруг наиболее темной центральной части (ее называют тень) наблюдается менее темная полутень (рис. 5.9). В центре пятна температура вещества снижается примерно до 4000 К, поэтому в спектре пятен наблюдаются полосы поглощения некоторых двухатомных молекул, например СО, TiO, CH, CN. Понижение температуры в районе пятна связано с действием магнитного поля, которое нарушает нормальную конвекцию и препятствует притоку энергии снизу. Вместе с тем вблизи пятен, где магнитное поле слабее, конвективные движения усиливаются, и появляются хорошо заметные яркие образования — факелы.
Наиболее крупными по своим масштабам проявлениями солнечной активности являются наблюдаемые в солнечной короне протуберанцы — огромные по объему облака газа, масса которых может достигать миллиардов тонн. Некоторые из них («спокойные») напоминают по форме гигантские занавеси толщиной 3—5 тыс. км, высотой около 10 тыс. км и длиной до 100 тыс. км, подпираемые колоннами, по которым газ течет из короны вниз. Они медленно меняют свою форму и могут существовать в течение нескольких месяцев. Во многих случаях в протуберанцах наблюдается упорядоченное движение отдельных сгустков и струй по криволинейным траекториям, напоминающим по форме линии индукции магнитных полей (рис. 5.10). Порой отдельные части протуберанцев быстро устремляются вверх со скоростями порядка нескольких сотен километров в секунду и поднимаются на огромную высоту (до 1 млн км), что превышает радиус Солнца. Оказалось, что происходит это во время вспышек.
Самыми мощными проявлениями солнечной активности являются вспышки, в процессе которых за несколько минут иногда выделяется энергия до 10 Дж (такова энергия примерно миллиарда атомных бомб). Вспышки наблюдаются как внезапные усиления яркости отдельных участков Солнца в районе пятен. Продолжительность сильных вспышек в среднем может достигать трех часов, а слабые длятся всего несколько минут. По скорости выделения энергии вспышки подобны взрыву. Солнечная плазма в этой области может нагреваться до температуры порядка 10 млн К. Возрастает кинетическая энергия выбросов веществ, движущихся в короне и уходящих в межпланетное пространство со скоростями до 1000 км/с. Получают дополнительную энергию и значительно ускоряются потоки электронов, протонов и других заряженных частиц. Усиливается оптическое, рентгеновское, гамма- и радиоизлучение. Детальная теория сложного комплекса явлений, наблюдаемых во время вспышек, пока еще не разработана, но, по современным представлениям, они связаны с возникновением и происходящим затем быстрым выделением избытка энергии в магнитных полях активных областей.
Потоки плазмы, образующиеся во время вспышки, через сутки — двое достигают окрестностей Земли. Магнитосфера нашей планеты отклоняет и задерживает эти потоки, так что только незначительная их часть попадает в земную атмосферу. Однако даже этого достаточно, чтобы вызывать магнитные бури, полярные сияния и другие геофизические явления. Например, при сильных вспышках практически прекращается слышимость радиопередач на коротких волнах по всему освещенному полушарию нашей планеты.
Число пятен и протуберанцев, частота и мощность вспышек на Солнце меняются с определенной, хотя и не очень строгой периодичностью— в среднем этот период составляет примерно 11,2 года (рис. 5.11). Отмечается определенная связь процессов жизнедеятельности растений и животных, состояния здоровья людей и погодноклиматических аномалий с уровнем солнечной активности, однако механизм воздействия этих процессов на земные явления еще не вполне ясен.
1. Из каких химических элементом состоит Солнце и каково их соотношение?
2. Какой источник энергии излучения Солнца? Какие изменения с его веществом происходят при этом?
3. Какой слой Солнца является основным источником видимого излучения?
4. Каково внутреннее строение Солнца? Назовите основные слои его атмосферы.
5. В каких пределах изменяется температура на Солнце от его центра до фотосферы?
6. Какими способами осуществляется перенос энергии из недр Солнца наружу?
7. Чем объясняется наблюдаемая на Солнце грануляция?
8. Какие проявления солнечной активности наблюдаются в различных слоях атмосферы Солнца? С чем связана основная причина этих явлений?
9. Чем объясняется понижение температуры в области солнечных пятен?
10. Какие явления на Земле связаны с солнечной активностью?
1. Можно ли заметить невооруженным глазом (через темный фильтр) на Солнце пятно размером с Землю, если глаз различает объекты, видимые размеры которых 2—3′?
2. Какова вторая космическая скорость на уровне фотосферы Солнца?
3. Какая мощность излучения приходится в среднем на 1 кг солнечного вещества?
Источник