Меню

Как образовались тяжелые химические элементы во вселенной

Откуда берутся тяжелые металлы

Слияние нейтронных звезд происходит очень редко, в нашей Галактике, например, — раз в десять тысяч лет, а образование новых элементов идет считанные миллисекунды после него. Однако, этот процесс является важным источником элементов тяжелее никеля и основным источником стабильных элементов тяжелее церия. Похоже, уже очень скоро нам расскажут о том, что сразу несколько телескопов увидели это столкновение и образовавшиеся в его результате гравитационные волны. Мы решили объяснить читателям N + 1, как это открытие поможет нам разобраться в происхождении различных элементов во Вселенной.

Несмотря на стремительное развитие астрофизики за последние 100 лет, наши знания о происхождении многих элементов таблицы Менделеева оставляет желать лучшего. Общая картина более или менее сложилась благодаря работам таких титанов, как Артур Эддингтон, Георгий Гамов и Фред Хойл, — водород и гелий появились в результате Большого взрыва, бомбардировка межзвездной среды космическими лучами ответственна за литий, бериллий, бор, а элементы от углерода до молибдена (вместе с примкнувшими к ним барием, вольфрамом и титаном) появляются в результате звездного нуклеосинтеза — реакций ядерного синтеза в ядрах звезд либо во время их жизни, либо в результате их яркой смерти (которое мы наблюдаем в виде вспышек сверхновых).

Элементы с массовым атомным числом больше 94 (и технеций) получены людьми, еще часть элементов весьма нестабильна, распадается при всяком удобном случае и в природе почти не встречается (полоний, астат и прочие).

Происхождение различных элементов. Фиолетовым выделены те атомы, которые появляются в результате слияния нейтронных звезд.

Это качественная картина, но при попытке дать количественный анализ начинаются проблемы: вспышки сверхновых, будучи одними из самых энергетически мощных взрывов во Вселенной, все равно не дают нужного количества тяжелых элементов. Ряд ученых еще в конце 1990-х провели компьютерные симуляции и пришли к выводу, что необходимые элементы можно получить, только если очень точно «подкрутить» параметры сверхновых (сечение захвата нейтрино или свойства слабого взаимодействия) и задать им нереалистичные начальные условия.Кроме того, ряд тяжелых элементов отсутствует у очень старых звезд. В них уже есть кремний, кальций и даже железо (то есть они собирались из водородного облака, которое было до этого обогащено остатками давно взорвавшихся сверхновых), но нет ни рубидия, ни йода, ни золота. Однако эти же элементы есть в более молодых звездах, которые, по идее, должны были образовываться из таких же облаков с остатками сверхновых. Не правда ли, странным выглядит предположение, что сверхновые через пару миллиардов лет после Большого взрыва поменяли принцип работы и стали производить элементы совсем в другой пропорции?

Значит, во Вселенной должны быть другие источники тяжелых элементов. В 1989 году было выдвинуто предположение, что таким источником могут быть слияния нейтронных звезд, вращающихся друг вокруг друга. Несмотря на то, что это намного более редкие события (мало того, что нейтронная звезда — достаточно экзотический объект, так ей еще нужно подобрать пару из такой же звезды), похоже, что за золото и платину в наших кольцах нам нужно сказать спасибо именно им.

Масса нейтронных звезд не очень велика (в среднем, она не должна превышать предел Оппенгеймера-Волкова, то есть около двух массой Солнца, иначе она станет черной дырой, хотя вращение или приливное взаимодействие со стороны звезды-компаньона может немного повысить этот предел), а в пространство после слияния выбрасывается и того меньше — около 10 процентов от их массы. Однако эффективность синтеза новых элементов во время слияния настолько высока, что этого оказывается достаточно для решения загадки недостающих тяжелых элементов. Подобная эффективность возникает благодаря быстрому нейтронному захвату или r-процессу — «вдавливанию» в ядра элементов разлетающихся от взрыва нейтронов. Само понятие «r-процесс» появилось в 1957 году, когда вышла фундаментальная статья B 2 FH (этой статье посвящена отдельная страница в Википедии!), в которой четверо ученых дали явлению название и предположили условия, необходимые для его протекания.

Откуда в нейтронной звезде, которая, по идее, должна состоять из нейтронов, тяжелые ядра? Дело в том, что нейтроны (и гипотетическая кварк-глюоная плазма) находятся только во внутренней части звезды, а внешняя ее «кора» — два километра из десяти — состоит из полноценных тяжелых элементов периодической таблицы Менделеева.

Когда две вращающиеся нейтронные звезды сближаются, это не похоже на столкновение двух бильярдных шаров: взаимное тяготение разрывает их внешние оболочки, срывая слой вещества со звезды, поэтому само слияние происходит в коконе из горячей плазмы, нейтронов и электронов. Сразу после слияния звезд часть массы переходит в гравитационные волны, основная масса становится либо очень быстро вращающейся нейтронной звездой, либо черной дырой, еще часть массы остается гравитационно связана с этим новым объектом и будет постепенно падать на него, но в то же время огромная энергия высвобождается в виде фотонов и ударной волны. Она сдувает весь внешний кокон ударной волной и высвобожденным из ядра потоком нейтронов. Именно эта концентрация в одном месте высокой температуры, плотной среды из атомов и гигантского потока нейтронов приводит к удивительным превращениям.

Компьютерная симуляция, описывающая среду сразу после слияния двух нейтронных звезд. Два спиральных рукава состоят из вещества внешней части нейтронных звезд, сорванных приливным взаимодействием с соседкой. Только материя, обозначенная серым цветом, будет выброшена из систем после взрыва, остальная часть будет вращаться вокруг образовавшегося объекта.

Источник

Ученые раскрыли, как возникают самые тяжелые элементы во Вселенной

Группа международных исследователей вернулась к формированию Солнечной системы 4,6 миллиарда лет назад, чтобы по-новому взглянуть на космическое происхождение самых тяжелых элементов. И обнаружила, как именно же они образовались и во время какого процесса.

Тяжелые элементы, с которыми мы сталкиваемся в нашей повседневной жизни, такие как железо и серебро, не существовали в начале Вселенной 13,7 миллиарда лет назад. Они были созданы во времени в результате ядерных реакций, называемых нуклеосинтезом, которые объединили атомы вместе. В частности, йод, золото, платина, уран, плутоний и кюрий — некоторые из самых тяжелых элементов — были созданы с помощью особого типа нуклеосинтеза, называемого процессом быстрого захвата нейтронов или r-процессом.

Читайте также:  Вселенная the new 52

Вопрос о том, какие астрономические события могут производить самые тяжелые элементы, оставался загадкой на протяжении десятилетий. Сегодня считается, что r-процесс может происходить во время сильных столкновений между двумя нейтронными звездами, между нейтронной звездой и черной дырой или во время редких взрывов после смерти массивных звезд. Такие высокоэнергетические события происходят во Вселенной очень редко. Когда это происходит, нейтроны включаются в ядра атомов, а затем превращаются в протоны. Поскольку элементы в периодической таблице определяются количеством протонов в их ядрах, процесс r создает более тяжелые ядра по мере захвата большего количества нейтронов.

Некоторые из ядер, образованных в результате r-процесса, радиоактивны, и для их распада на стабильные ядра требуются миллионы лет. Йод-129 и кюрий-247 — два таких ядра, которые были образованы до образования Солнца. Они были включены в твердые тела, которые в конечном итоге упали на земную поверхность в виде метеоритов. Внутри этих метеоритов в результате радиоактивного распада образовался избыток стабильных ядер. Сегодня это превышение можно измерить в лабораториях, чтобы определить количество йода-129 и кюрия-247, которые присутствовали в Солнечной системе непосредственно перед ее образованием.

Почему эти два ядра r-процесса такие особенные? У них есть обычное свойство: они распадаются почти с одинаковой скоростью. Другими словами, соотношение между йодом-129 и кюрием-247 не изменилось с момента их создания миллиарды лет назад.

«Это удивительное совпадение, особенно с учетом того, что эти ядра являются двумя из пяти радиоактивных ядер r-процесса, которые можно измерить в метеоритах. Когда соотношение йода-129 и кюрия-247 застыло во времени, как доисторическое ископаемое, мы можем напрямую взглянуть на последнюю волну производства тяжелых элементов, которая сформировала состав Солнечной системы и всего в ней».

Бенуа Котэ, обсерватория Конколы

Йод с его 53 протонами создается легче, чем кюрий с его 96 протонами. Это связано с тем, что для достижения большего числа протонов кюрия требуется больше реакций захвата нейтронов. Как следствие, соотношение йода-129 и кюрия-247 сильно зависит от количества нейтронов, которые были доступны во время их создания.

Команда рассчитала соотношение йода-129 к кюрию-247, синтезируемые столкновениями нейтронных звезд и черных дыр, чтобы найти правильный набор условий, воспроизводящих состав метеоритов. Они пришли к выводу, что количество нейтронов, доступных во время последнего события r-процесса перед рождением Солнечной системы, не могло быть слишком большим. В противном случае было бы образовано слишком много кюрия по сравнению с йодом. Это означает, что очень богатые нейтронами источники, такие как материя, оторвавшаяся от поверхности нейтронной звезды во время столкновения, вероятно, не играли важной роли.

Так что же создало эти ядра r-процесса ? Хотя исследователи могли предоставить новую информативную информацию о том, как они были созданы, они не смогли определить природу астрономического объекта, который их создал. Это связано с тем, что модели нуклеосинтеза основаны на неопределенных ядерных свойствах, и до сих пор неясно, как связать доступность нейтронов с конкретными астрономическими объектами — такими, как массивные взрывы звезд и сталкивающиеся нейтронные звезды.

С помощью этого нового диагностического инструмента достижения в области астрофизического моделирования и понимания ядерных свойств могут выявить, какие астрономические объекты создают самые тяжелые элементы Солнечной системы.

Источник

Как Вселенная создавала элементы?

Вселенная, которую мы знаем сегодня, почти полностью состоит из загадочной темной материи и еще более загадочной темной энергии. Обычного же вещества в ней совсем немного. В основном, это водород и гелий — самые легкие элементы периодической таблицы Менделеева. Именно эти вещества образовались после Большого взрыва, и именно из них состоит большинство звезд и межзвездного газа. Здесь на Земле это не так очевидно, поскольку нас окружают самые разные элементы таблицы, а некоторые ученые продолжают искать новые сочетания атомов на ускорителях. Но всё, что мы видим на Земле, и из чего состоим сами — лишь малая часть необъятной Вселенной. Как так вышло? Рассказывает профессор РАН Александр Лутовинов.

Лутовинов Александр Анатольевич – заместитель директора по научной работе Института космических исследований Российской академии наук, профессор РАН.

— Согласно современным представлениям, в том числе модели Большого взрыва, первых химических элементов было совсем немного. Известно, что это был водород и гелий.

— И чуть-чуть лития.

— Почему именно эти элементы?

— В изначальной модели Большого взрыва (кстати, предложенной нашим соотечественником Г. Гамовым) предполагалось, что большинство известных элементов возникло в первые минуты после Большого взрыва. Но вскоре стало понятно, что это не совсем так – из-за отсутствия в природе стабильных элементов с массами 5 и 8 произвести в имеющихся на тот момент условиях более тяжелые элементы практически невозможно. Таким образом, согласно принятой на сегодняшний день модели, в первые минуты после рождения Вселенной появились лишь водород, гелий и немного лития.

— А как развивались события дальше?

— Ранняя Вселенная была очень горячей. Она состояла из полностью ионизированного вещества, т.е. отдельных барионов и свободных электронов, которое находилось в состоянии теплового равновесия с излучением. Фотоны постоянно излучались, поглощались, снова переизлучались. Так продолжалось примерно 380 тысяч лет, пока Вселенная не охладилась настолько, что электроны начали соединяться с протонами или альфа-частицами, тем самым сформировав первые атомы. Тогда на водород приходилось около 92% всех атомов Вселенной, а остальные восемь процентов практически полностью приходились на образовавшийся в первые минуты гелий с малыми примесями лития.

— Тогда откуда появились остальные элементы?

— Другие элементы появились в звездах. Фактически, звезды – это самые мощные фабрики по производству химических элементов во Вселенной.

— Но если первых элементов фактически было всего два, откуда взяться элементам в этих звездах?

— А вот это действительно интересно, и связано с вопросом о происхождении первых звезд. Представьте себе однородную Вселенную, состоящую из водорода и гелия. Здесь каким-то образом должны были образоваться первичные сгустки вещества, которые стали бы зачатками первых плотных объектов, то есть первых звезд. Это достаточно сложный процесс, поскольку газ в такой системе был очень горячий, и его так просто не сожмешь, чтобы создать звезду. Для этого, в первую очередь, необходимо каким-то образом понизить температуру вещества. Это может достаточно эффективно осуществляться с помощью пыли или многоатомных молекул тяжелых элементов, как это происходит в современной Вселенной. Однако на ранних стадиях ни того, ни другого не было. Согласно современным теориям эффективное охлаждение первичной материи осуществлялось молекулярным водородом.

Читайте также:  Вселенная звезды планеты астероиды метеориты кометы

«ЗВЕЗДЫ – ЭТО САМЫЕ МОЩНЫЕ ФАБРИКИ ПО ПРОИЗВОДСТВУ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ ВО ВСЕЛЕННОЙ»

Второй проблемой является создание первичных неоднородностей гравитационного поля, где могло бы начать формироваться протозвездные облака и сами звезды. И вот здесь на помощь приходит темная материя. У нее есть замечательное свойство – она напрямую не взаимодействует с электромагнитным излучением, однако оказывает гравитационное воздействие на барионное вещество. Если представить, что в этой темной материи образовываются области с повышенным гравитационным потенциалом, можно сказать гравитационные ямки, то охлаждаемое вещество начнет постепенно туда стекаться, образуя место формирования гравитационно-связанных объектов – первых звезд и галактик.

По разным оценкам, первые звезды сформировались примерно через 300-400 миллионов лет после Большого взрыва, хотя некоторые исследователи считают, что это могло произойти гораздо раньше – уже через 30-70 миллионов. Это очень важный вопрос, от правильного ответа на который может зависеть дальнейшее построение модели развития Вселенной.

Первые звёзды должны были быть очень большими, по некоторым оценкам их массы могли достигать 300 или даже 500 масс Солнца (для сравнения, большинство современных звезд являются маломассивными объектами с массами сравнимыми или меньше солнечной). В ядре такой звезды из-за огромных давлений и температур создавались оптимальные условия для реакций термоядерного синтеза и образования новых элементов.

Вообще, массивные звезды живут недолго. К примеру, характерное время эволюции звезд типа нашего Солнца составляет примерно 10 миллиардов лет. А первые звезды, по некоторым оценкам, жили всего лишь несколько миллионов лет. Они были чрезвычайно яркими, светили в миллионы раз ярче Солнца, очень быстро прогорали и взрывались сверхновыми. Возможно, некоторые из них оставили после себя первые черные дыры.

И здесь есть один важный момент – если звезда заканчивает свою жизнь вспышкой сверхновой, то наблюдается гамма-всплеск. Самый далекий всплеск был зарегистрирован в 2009 году. Оказалось, что вспыхнула звезда в момент, когда Вселенной было около 630 миллионов лет. Мы надеемся, что в дальнейшем обнаружим и более далекие всплески и увидим конец жизни первых звезд.

— Как ученые поняли, что элементы на Земле звездного происхождения?

— А они не могут быть иного происхождения. Сейчас достаточно хорошо разработана теория возникновения Солнечной системы. Считается, что она образовалась из части газопылевого облака, центральные области которого сколлапсировали, образовав Солнце. Внешние части образовали протопланетный диск, в котором образовались локальные центры гравитационного притяжения и планеты.

Откуда взялось это газопылевое облако? Скорее всего, из вещества другой звезды, предположительно массивной, которая когда-то давным-давно взорвалась, выбросив в космическое пространство большое количество химических элементов, образовавшихся в течение ее жизни. И, соответственно, оттуда же и взялись все элементы, которые мы встречаем на Земле. Впоследствии, Земля и дальше обогащалась элементами, поскольку из космоса постоянно прилетали астероиды, кометы и сталкивались с ней.

— А какое количество элементов может выделяться при взрыве звезды?

— Это зависит от множества факторов, но прежде всего от массы звезды. Как уже говорилось выше, если она не очень большая, примерно как наше Солнце, то живет достаточно долго. Миллиарды лет в ней идут термоядерные реакции, основой которых является так называемый pp-цикл (протон-протонный цикл). При протон-протонном цикле сталкиваются протоны, образуя водород, который, сгорая, образует гелий. Когда водород прогорает, начинает гореть гелий. Из гелия в дальнейшем получается углерод.

Всё это – процессы сложных термоядерных реакций, которые идут при температурах 10-15 млн. градусов в случае протон-протонного цикла и существенно более высоких значениях (примерно 100-150 млн. градусов) для горения гелия. Кстати, если сталкиваются два ядра гелия – образуется бериллий 8 Ве. Но дело в том, что он неустойчив, и время его жизни составляет примерно 10 -16 секунды, поэтому он быстро распадается. Но при достаточно высокой плотности и температуре существует вероятность, что за это время с ядром бериллия столкнется еще одно ядро гелия. И эта реакция – ключевая. Образуется углерод – основа жизни.

Далее углерод может захватить еще один гелий, и получится кислород. Также может образоваться азот и, возможно, неон. Но на этом этапе, как правило, процесс заканчивается, поскольку энергии звезды, температуры и давления в ее недрах уже не хватает, чтобы инициировать дальнейшие термоядерные реакции. Из такой звезды со временем образуется белый карлик – звездочка размером с Землю, но с примерно солнечной массой. Этот белый карлик будет состоять, в основном, из углерода, с примесью кислорода и некоторых других элементов. Образно говоря, белые карлики — это самые большие алмазы во Вселенной.

Если же звезда очень большая, например, 20-30 масс Солнца, то давления и температуры внутри нее существенно выше. Соответственно, реакции продолжаются уже в рамках углеродно-азотного цикла (так называемый CNO-цикл). В недрах массивных звезд уже возможно образование и магния, и серы, и кремния, и так вплоть до железа. Эти реакции достаточно сложные. Температуры, при которых эти реакции проходят, огромны – миллиарды градусов. К концу своего существования такая звезда похожа на «луковицу», в разных слоях которой продолжаются реакции горения. Во внешних слоях горят остатки водорода, затем «слой» гелия, дальше – углерод, кислород, кремний, а в центре – железное ядро. Такое слоевое горение поддерживает жизнь звезды на конечной стадии ее эволюции.

«ЗНАТЬ ОТВЕТЫ НА ВСЕ ВОПРОСЫ, НАВЕРНОЕ, ЗАМАНЧИВО, НО НЕИНТЕРЕСНО. ПОЛУЧАЕТСЯ, ЧТО НЕКУДА ДАЛЬШЕ ДВИГАТЬСЯ. ПОЭТОМУ, КАК МНЕ КАЖЕТСЯ, ВСЕГДА ДОЛЖНО ОСТАВАТЬСЯ ЧТО-ТО НЕПОЗНАННОЕ, КАКОЕ-ТО НОВОЕ ЗНАНИЕ, К КОТОРОМУ ЧЕЛОВЕК ДОЛЖЕН СТРЕМИТЬСЯ. ТОЛЬКО ТАК ОН БУДЕТ РАЗВИВАТЬСЯ»

В какой-то момент центральное ядро уже не может удерживаться от дальнейшего коллапса. Все вещество словно падает внутрь, а затем взрывается и под действием ударных волн разлетается во все стороны во время вспышки сверхновой, разбрасывая химические элементы по Вселенной. Многие из них являются радиоактивными и при дальнейшем распаде излучают рентгеновские и гамма-кванты. Эти кванты излучаются преимущественно в виде линий, которые могут регистрироваться современными космическими обсерваториями, и интенсивность которых позволяет оценить количество того или иного элемента. Например, наблюдая с помощью обсерватории ИНТЕГРАЛ остаток вспышки сверхновой SN1987A в Большом Магеллановом Облаке, мы зарегистрировали излучение в линиях, соответствующих распаду радиоактивного титана-44, и оценили количество этого элемента, родившегося во время этой вспышки.

Читайте также:  Самые популярные вымышленные вселенные

Важно отметить, что на последних стадиях перед вспышкой сверхновой может происходить процесс нейтронизации, когда железо сталкивается с гамма-квантом и распадается на несколько атомов гелия и нейтроны. Образуется среда, сильно обогащенная нейтронами, где могут проходить процессы так называемого быстрого нейтронного захвата и образовываться элементы тяжелее железа, которые не могут быть синтезированы в термоядерных реакциях. Но и это еще не все.

— А что дальше?

— Долгое время считалось, что именно вспышки сверхновых ответственны за производство элементов тяжелее железа. Однако оказалось, что наблюдаемого темпа вспышек сверхновых недостаточно для того, чтобы объяснить то обилие тяжелых элементов, которое мы видим в космосе. Научное сообщество столкнулось с дилеммой, пока не возникла «красивая» идея, отвечающая на этот вопрос.

Известно, что после исчерпания запасов топлива и вспышки сверхновой массивная звезда может превратиться в нейтронную звезду. Представьте себе объект с массой примерно равной или немного больше массы Солнца, который сжат до радиуса 10 километров (немногим больше, чем Третье транспортное кольцо Москвы). Внутри этого объекта плотность оказывается настолько велика, что электроны просто вжимаются в протоны, фактически формируя гигантское нейтронное ядро, в самом центре которого плотность может в разы превышать ядерную. Если рядом находилась другая звезда, которая впоследствии тоже превратилась в нейтронную звезду, то может образоваться система из двух нейтронных звезд, вращающихся друг вокруг друга. В соответствие с предсказаниями общей теории относительности в этом случае должны испускаться гравитационные волны.

Потеря общей энергии такой системы вследствие излучения гравитационных волн будет приводить к тому, что нейтронные звезды будут сближаться. При сближении они будут всё больше терять энергию, пока однажды не столкнутся, что приведет к гигантскому взрыву, сопровождающемуся гравитационно-волновыми колебаниями пространства и вспышкой гамма-излучения, во время которого будут создаваться новые тяжелые элементы. Кстати, именно такое событие было зарегистрировано 17 августа 2017 года гравитационно-волновыми детекторами LIGO/Virgo и обсерваториями Fermi и ИНТЕГРАЛ. Пока это единственный случай прямой регистрации слияния нейтронных звезд, однако наблюдения уже дали огромное количество новой информации о процессах рождения новых элементов в космосе. Сегодня большинство теоретиков и экспериментаторов склоняются к тому, что значительная часть тяжелых элементов – золото, уран, плутоний – образовалась именно во время слияния нейтронных звезд. Но это только начало большого исследовательского пути.

— То есть белых пятен еще много?

— А на какие вопросы нужно ответить в первую очередь?

— Астрофизика, космология – очень богатые науки. Здесь много неизведанного, непонятного, множество разных объектов для исследований. Сейчас есть несколько ключевых задач, на решение которых или на понимание физики которых направлены большие усилия. Одно из них – темная материя. Из чего она состоит, что это такое? Есть несколько теорий, но наблюдений, подтверждающих какую-то из них, пока нет. Еще более непонятная субстанция – темная энергия, из которой, по современным данным, состоит около 70% Вселенной. Считается, что именно она ответственна за ее ускоренное расширение.

Для меня как ученого, изучающего нейтронные звезды, крайне интересно узнать – из чего они все-таки состоят. Чтобы ограничить возможные сценарии, необходимо постараться наиболее точно измерить массу и радиус этих звезд. И, на самом деле, это очень непростая задача, которую несколько групп в мире, в том числе и наша, пытаются решить. Зная массу и радиус звезды, можно получить ограничения на уравнение состояния, которое как раз связано с составом звезды. Есть разные теории, которые предсказывают в центре звезды кварковое ядро, в котором нейтроны разваливаются на составляющие их кварки, гиперонное ядро из барионов, каонное ядро из двухкварковых частиц с одним странным кварком и т.д. Таким образом, понимание того, какова природа нейтронных звезд, из чего они состоят – это, на мой взгляд, одни из важнейших вопросов. Ответы на них стали бы огромным шагом в понимании устройства Вселенной.

— Как химики взаимодействуют с астрофизиками?

Вопросы происхождения элементов в космосе недавно обсуждались на очень представительном международном астрофизическом симпозиуме, который проходил в рамках Менделеевского съезда в сентябре в Санкт-Петербурге. Это был первый опыт участия астрофизиков в столь масштабном мероприятии, проводимом нашими коллегами-химиками, и, по многочисленным отзывам, он оказался очень позитивным. В частности, один из пленарных докладов на съезде представила президент Международного Астрономического союза, профессор Эвина ван Дисхук. Доклад произвел на всех (а это несколько тысяч человек!) очень большое впечатление, в нем ярко и очень интересно было рассказано о том, как химические элементы или даже молекулы рождаются в космосе.

Сам астрофизический симпозиум был также чрезвычайно интересным. На съезд приехали специалисты и по первичным звездам, и по нуклеосинтезу, и те, кто изучает вспышки сверхновых и слияния нейтронных звезд. Много дискуссий было посвящено звездам в центре галактики, вопросам повышенного содержания металлов в таких объектах.

— Человечество когда-нибудь приблизится к абсолютному знанию о Вселенной?

— Знать ответы на все вопросы, наверное, заманчиво, но неинтересно. Получается, что некуда дальше двигаться. Поэтому, как мне кажется, всегда должно оставаться что-то непознанное, какое-то новое знание, к которому человек должен стремиться. Только так он будет развиваться.

Источник

Adblock
detector