Водород во вселенной
ВОДОРОД ВО ВСЕЛЕННОЙ
Обычно, чтобы подчеркнуть значение того или иного элемента, говорят если бы его не было, то случилось бы то-то и то-то. Но, как правило, это не более чем риторический прием. А вот водорода может когда-нибудь действительно не стать, потому что он непрерывно сгорает в недрах звезд, превращаясь в инертный гелии. И когда запасы водорода иссякнут, жизнь во Вселенной станет невозможной — и потому, что погаснут солнца, и потому, что не станет воды…
Водород и Вселенная
Когда-то люди обожествляли Солнце. Но теперь оно стало объектом точных исследований, и мы редко задумываемся о том, что само наше существование целиком и полностью зависит от происходящих на нем процессов.
Каждую секунду Солнце излучает в космическое пространство энергию, эквивалентную примерно 4 млн. т массы. Эта энергия рождается в ходе слияния четырех ядер водорода, протонов, в ядро гелия; реакция идет в несколько стадий, а ее суммарный результат записывается вот таким уравнением
4¹H⁺ → ⁴He²⁺ + 2e⁺ + 26,7 Мэв
Много это или мало — 26,7 Мэв на один элементарный акт? Очень много: при «сгорании» 1 г протонов выделяется в 20 млн. раз больше энергии, чем при сгорании 1 г каменного угля. На Земле такую реакцию еще никто не наблюдал: она идет при температуре и давлении, существующих лишь в недрах звезд и еще не освоенных человеком.
Мощность, эквивалентную ежесекундной убыли массы в 4 млн. т, невозможно представить: даже при мощнейшем термоядерном взрыве в энергию превращается всего около 1 кг вещества. Но если отнести всю излучаемую Солнцем энергию к его полной массе, то выяснится невероятное удельная мощность Солнца окажется ничтожно малой-много меньше, чем мощность такого «тепловыделяющего устройства», как сам человек. И расчеты показывают, что Солнце будет светить, не ослабевая, еще по меньшей мере 30 млрд. лет.
Наше Солнце по меньшей мере наполовину состоит из водорода. Всего на Солнце обнаружено 69 химических элементов, но водород — преобладает. Его в 5,1 раза больше, чем гелия, и в 10 тыс. раз (не по весу, а по числу атомов) больше, чем всех металлов, вместе взятых. Этот водород расходуется не только на производство энергии. В ходе термоядерных процессов из него образуются новые химические элементы, а ускоренные протоны выбрасываются в околосолнечное пространство.
Последнее явление, получившее название «солнечного ветра», было открыто сравнительно недавно во время исследования космического пространства с помощью искусственных спутников. Оказалось, что особенно сильные порывы этого «ветра» возникают во время хромосферных вспышек. Достигнув Земли, поток протонов, захваченный ее магнитным полем, вызывает полярные сияния и нарушает радиосвязь, а для космонавтов «солнечный ветер» представляет серьезную опасность. Но только ли этим ограничивается воздействие на Землю потока ядер солнечного водорода? По-видимому, нет. Во-первых, виток протонов рождает вторичное космическое излучение, достигающее поверхности Земли; во-вторых, магнитные бури могут влиять на процессы жизнедеятельности; в-третьих, захваченные магнитным полем Земли ядра водорода не могут не сказываться на ее массообмене с космосом.
Судите сами: сейчас в земной коре из каждых 100 атомов 17 —это атомы водорода. Но свободного водорода на Земле практически не существует: он входит в состав годы минералов, угля, нефти, живых существ… Только вулканические газы иногда содержат немного водорода, который в результате диффузии рассеивается в атмосфере. А так как средняя скорость теплового движения молекул водорода из-за их малой массы очень велика — она близка ко второй космической скорости,— то из слоев атмосферы эти молекулы улетают в космическое пространство.
Но если Земля теряет водород, то почему она не может его получать от того же Солнца? Раз «солнечный ветер» — это ядра водорода, которые захватываются магнитным полем Земли, то почему бы им на ней не остаться? Ведь в атмосфере Земли есть кислород; реагируя с залетевшими ядрами водорода, он свяжет их, и космический водород рано или поздно выпадет на поверхность планеты в виде обыкновенного дождя. Более того, расчет показывает, что масса водорода, содержащегося в воде всех земных океанов, морей, озер и рек, точно равна массе протонов, занесенных «солнечным ветром» за всю историю Земли. Что это — простое совпадение?
…Мы должны сознавать, что наше Солнце, наше водородное Солнце,— это лишь заурядная звезда во Вселенной, что существует неисчислимое множество подобных звезд, удаленных от Земли на сотни, тысячи и миллионы световых лет. И кто знает — может быть именно в диапазоне радиоизлучения межзвездного водорода (запомните— 21 сантиметр!) человечеству впервые удастся связаться с иноземными цивилизациями… Как говорится, поживем — увидим.
Вы читаете, статья на тему Водород во вселенной
Источник
Все за сегодня
Политика
Экономика
Наука
Война и ВПК
Общество
ИноБлоги
Подкасты
Мультимедиа
Как Вселенная сотворила материю, создавшую человека
На ранней стадии развития вселенной в ней существовал только водород — самый простой из всех химических элементов. Но его было отнюдь не достаточно для создания таких сложных объектов, как планеты и человек. Со временем материя охладилась настолько, что из протона и отрицательно заряженного электрона образовался атом водорода; к тому моменту, на водород приходилось около 92% всех атомов вселенной, причем, остальные восемь процентов практически полностью приходились на образовавшийся в результате синтеза гелий, очень небольшое количество лития и некоторые другие из самых легких химических элементов. Однако для образования прочих элементов температура на ранней этапе образования вселенной в тот момент была недостаточной, и в космосе наступила темная эра, длившаяся 380 миллионов лет.
Затем во вселенной, по мере ее расширения и охлаждения, стали хозяйничать силы гравитации. В эту эпоху формируются галактики, а вслед за ними — первые звезды. Поначалу они излучали свет благодаря гравитационному сжатию: как только звезда сжималась под давлением собственной массы, водород сильно уплотнялся, а звезда сильно разогревалась. Благодаря гравитации звезды могли излучать свет в течение нескольких миллионов лет, поскольку температура внутри звезды была вполне достаточна для того, чтобы запустить механизм термоядерного синтеза.
Термоядерный синтез в звездах — это поистине величественное явление природы, в ходе которого происходит соединение двух ядер. Однако, не все так просто: в большинстве звезд ядра водорода все равно не могут достаточно близко подлететь друг к другу и, тем самым, запустить термоядерную реакцию, ведь чем ближе ядра водорода друг к другу подлетают, тем сильнее отталкиваются, поскольку оба заряжены положительно. Но, поскольку пара ядер — это квантовые объекты, то для слияния им вовсе не нужно подлетать на очень близкое расстояние, поскольку здесь начинает действовать так называемый туннельный эффект: представьте, сначала оба ядра очень близко подлетают друг к другу, а в следующий момент они уже оказываются соединенными. Эта похоже на то, как если бы оба ядра подлетели к стене, а в следующий момент каким-то чудесным образом оказались по другую сторону.
Но даже квантового волшебства отнюдь не достаточно для того, чтобы звезда продолжала гореть. Для этого необходим не только ядерный синтез, но и продуцирование чего-то стабильного. В результате синтеза двух протонов образуется гелий-II (содержит два протона без нейтронов); он крайне нестабилен и сразу же распадается на два протона. Вместе с тем существует вероятность (1/10000) того, что один из протонов превратится в нейтрон, в результате чего получится стабильный изотоп водорода — дейтерий. В свою очередь, при синтезе водорода и дейтерия образуется устойчивый изотоп гелия, при этом высвобождается гигантское количество энергии — именно так раскрывается гигантский творческий потенциал звезд.
Контекст
Уникальна ли жизнь на Земле?
В нашей галактике много планет, подобных Земле
Мы и музыка
В небольших звездах водород был единственным элементом, который принимал участие в термоядерном синтезе; при уменьшении его запасов звезда угасала. Но после того, как самые большие из первых звезд полностью сжигали весь свой водород с образованием гелия, горение в них продолжало идти по другим законам: как только звезда прекращала сжигать водород, давление внутри нее падало, но гравитация вновь начинала ее сжимать, вследствие чего температура внутри звезды возрастала. И как только она достигала ста миллионов градусов по Кельвину, гелий начинал превращаться в бериллий (ядро бериллия состоит из четырех протонов); в результате взаимодействия гелия и бериллия получался углерод (в его ядре семь протонов) — а это уже основной элемент для жизни на Земле. Синтез углерода происходил в раскаленных недрах звезды; правда, ему еще предстояло пройти очень и очень долгий путь, прежде, чем стать частью человеческого организма. Из углерода в результате синтеза появился азот и кислород (в их ядрах соответственно семь и восемь протонов) — а это еще два элемента необходимых для появления жизни; из этих двух элементов в результате цепи превращений можно получить железо (26 протонов).
Однако трансформация железа в более тяжелые элементы не сопровождается выделением энергии, как это было при термоядерном синтезе более легких элементов — наоборот, при образовании железа происходит поглощение энергии. Если бы более легкие элементы при термоядерном синтезе всегда превращались в более тяжелые, то тогда бы реакция синтеза в недрах звезды проходила в течение неопределенно долгого времени, покуда светило не превратилось бы в нейтронную звезду — огромный однородный шар, состоящий из ядерного материала. Но поскольку при термоядерном синтезе железа ядро звезды охлаждалось, то и сама реакция синтеза затухала. После ее прекращения, первые массивные звезды, вспыхнувшие после Большого взрыва, начинали сжиматься под действием гравитации, что затем приводило к взрыву сверхновой, который сопровождался мощным выбросом вещества из внешней оболочки звезды, богатой углеродом, азотом и кислородом, в межзвездное пространство с одновременным сжатием звездного ядра, которое затем превращалось в нейтронную звезду.
Долгое время считалось, что разнообразие химических элементов, окружающих нас, полностью обусловлено термоядерным синтезом и взрывами сверхновых. Но теперь-то мы знаем, что образовании этих элементов сыграли свою важную роль также и другие экзотичные процессы. Как показали недавно проведенные исследования, золото и остальные редко встречающиеся тяжелые химические элементы образуются в большом количестве при столкновении двух нейтронных звезд. Вполне вероятно, что как раз в результате одного из таких столкновений образовалось все золото, имеющееся на нашей планете.
Превращение водорода в другие химические элементы происходило благодаря редким по своей природе космическим явлениям и квантовым процессам. Первозданную материю и человека объединяет друг с другом длинная цепь случайностей. Вероятность появления каждого из звеньев этой цепи очень мала; к тому же, большую роль в его возникновении играет и сам характер каждого из физических процессов. Так, если бы уровень сильного ядерного взаимодействия, удерживающего вместе два протона, был на два процента больше, то тогда изотоп гелия — гелий-II — оказался бы стабильным; в этом случае, термоядерная реакция протекала бы еще легче, а первое поколение горячих и плотных звезд вообще бы не появилось. Если бы характер протекания любого из физических процессов изменился, то наша вселенная выглядела бы сегодня по-другому, а человек, вероятнее всего, вообще бы не появился.
Иногда к сказанному выше ученые применяют выражение «тонкая настройка» вселенной, в основе которого лежит идея о том, что существование жизни в первую очередь зависит от таких явлений, как термоядерный синтез, протекающий внутри звезд не произвольным, а строго определенным образом. Именно данный факт заставил некоторых ученых обратить свой взор к теологическому обоснованию происхождения вселенной, правда, другие склонились к противоположной точке зрения. В любом случае ясно одно: вселенная проявила себя вовне — и в результате этого появился человек. Вещество, из которого состоит человек и окружающий его мир, явилось на свет в результате превращений водорода под воздействием гравитации и времени.
Брайан Коберлейн — астрофизик, профессор физики Рочестерского технологического института (RIT). Автор статей в области астрономии и астрофизики, опубликованных в его блоге «One Universe at a Time». Адрес в Twitter: @BrianKoberlein.
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.
Источник
Получение и нахождение в космосе водорода. Ученые нашли способ добычи кислорода в космосе. Десять самых распространенных элементов в Галактике Млечный Путь
Водород (Н) очень легкий химический элемент, с содержанием в Земной коре 0,9% по массе, а в воде 11,19%.
Характеристика водорода
По легкости он первый среди газов. При нормальных условиях безвкусен, бесцветен, и абсолютно без запаха. При попадании в термосферу улетает в космос из-за малого веса.
Во всей вселенной это самый многочисленный химический элемент (75% от всей массы веществ). Настолько, что многие звезды в космическом пространстве состоят полностью из него. Например, Солнце. Его основной компонент — водород. А тепло и свет это итог выделения энергии при слиянии ядер материала. Так же в космосе есть целые облака из его молекул различной величины, плотности и температуры.
Физические свойства
Высокая температура и давление значительно меняют его качества, но при обычных условиях он:
Обладает высокой теплопроводностью, если сравнивать с другими газами,
Нетоксичен и плохо растворим в воде,
С плотностью 0,0899 г/л при 0°С и 1 атм.,
Превращается в жидкость при температуре -252,8°С
Становится твердым при -259,1°С.,
Удельная теплота сгорания 120,9.106 Дж/кг.
Для превращения в жидкость или твердое состояние требуются высокое давление и очень низкие температуры. В сжиженном состоянии он текуч и легок.
Химические свойства
Под давлением и при охлаждении (-252,87 гр. С) водород обретает жидкое состояние, которое по весу легче любого аналога. В нем он занимает меньше места, чем в газообразном виде.
Он типичный неметалл. В лабораториях его получают путем взаимодействия металлов (например, цинка или железа) с разбавленными кислотами. При обычных условиях малоактивен и вступает в реакцию только с активными неметаллами. Водород может отделять кислород из оксидов, и восстанавливать металлы из соединений. Он и его смеси образуют водородную связь с некоторыми элементами.
Газ хорошо растворяется в этаноле и во многих металлах, особенно в палладии. Серебро его не растворяет. Водород может окисляться во время сжигания в кислороде или на воздухе, и при взаимодействии с галогенами.
Во время соединения с кислородом, образуется вода. Если температура при этом обычная, то реакция идет медленно, если выше 550°С — со взрывом (превращается в гремучий газ).
Нахождение водорода в природе
Хотя водорода очень много на нашей планете, но в чистом виде его найти нелегко. Немного можно обнаружить при извержении вулканов, во время добычи нефти и в месте разложения органических веществ.
Больше половины всего количества находится в составе с водой. Так же он входит в структуру нефти, различной глины, горючих газов, животных и растений (присутствие в каждой живой клетке 50% по числу атомов).
Круговорот водорода в природе
Каждый год в водоемах и почве разлагается колоссальное количество (миллиарды тонн) остатков растений и это разложение выплескивает в атмосферу огромную массу водорода. Так же он выделяется при любом брожении, вызываемом бактериями, сжигании и наравне с кислородом участвует в круговороте воды.
Области применения водорода
Элемент активно используется человечеством в своей деятельности, поэтому мы научились получать его в промышленных масштабах для:
Как горючее для ракет (жидкий водород)-
Электроэнергетики для охлаждения электрических генераторов-
Сварки и резки металлов.
Масса водорода используется при производстве синтетического бензина (для улучшения качества топлива низкого качества), аммиака, хлороводорода, спиртов, и других материалов. Атомная энергетика активно использует его изотопы.
Препарат «перекись водорода» широко применяют в металлургии, электронной промышленности, целлюлозно-бумажном производстве, при отбеливании льняных и хлопковых тканей, для изготовления красок для волос и косметики, полимеров и в медицине для обработки ран.
«Взрывной» характер этого газа может стать гибельным оружием — водородной бомбой. Ее взрыв сопровождается выбросом огромного количества радиоактивных веществ и губительно для всего живого.
Соприкосновение жидкого водорода и кожных покровов грозит сильным и болезненным обморожением.
Космические агентства и частные компании уже разрабатывают планы по отправке людей на Марс в ближайшие несколько лет, что в конечном итоге приведет к его колонизации. И с увеличением числа открытых землеподобных планет вокруг близлежащих звезд дальние космические путешествия становятся все более актуальными.
Однако людям нелегко выжить в космосе в течение длительного периода времени. Одной из основных проблем космического полета на большие расстояния является транспортировка достаточного количества кислорода для дыхания космонавтов и достаточного количества топлива для работы сложной электроники. К сожалению, в космосе практически нет кислорода, поэтому запасать его нужно на Земле.
Но новое исследование, опубликованное в Nature Communications , показывает, что можно производить водород (для топлива) и кислород (для дыхания) из воды, используя только полупроводниковый материал, солнечный (или звездный) свет и невесомость, что делает далекие путешествия более реальными.
Использование неограниченного ресурса Солнца для питания нашей повседневной жизни — одна из самых глобальных задач на Земле. Поскольку мы медленно отходим от нефти к возобновляемым источникам энергии, исследователи заинтересованы в возможности использования водорода в качестве топлива. Лучшим способом сделать это было бы разделение воды (H2O) на ее составляющие: водород и кислород. Это возможно с использованием процесса, известного как электролиз, который состоит в пропускании тока через воду, содержащую некоторое количество растворимого электролита (например, соли — прим. перев.). В результате вода распадается на атомы кислорода и водорода, которые выделяются каждый на своем электроде.
Электролиз воды.
Хотя этот метод технически возможен и известен уже не одно столетие, он все еще не стал легкодоступным на Земле, поскольку нам нужно больше инфраструктуры, связанной с водородом — например, заправочных станций водорода.
Водород и кислород, полученные таким образом из воды, могут также использоваться в качестве топлива на космическом корабле. Запуск ракеты с водой на самом деле был бы намного безопаснее, чем с дополнительным ракетным топливом и кислородом на борту, так как при аварии их смесь может быть взрывоопасной. Теперь же в космосе специальная технология сможет разделить воду на водород и кислород, которые, в свою очередь, могут быть использованы для поддержания дыхания и работоспособности электроники (например, с помощью топливных элементов).
Для этого есть два варианта. Один из них — это электролиз, как и на Земле, с использованием электролитов и солнечных батарей для получения тока. Но, увы, электролиз — очень энергозатратный процесс, а энергия в космосе и без того «на вес золота».
Альтернативой является использование фотокатализаторов, которые работают путем поглощения фотонов полупроводниковым материалом, размещенном в воде. Энергия фотона «выбивает» электрон из материала, оставляя в нем «дырку». Свободный электрон может взаимодействовать с протонами в воде с образованием атомов водорода. Между тем, «дырка» может поглощать электроны из воды с образованием протонов и атомов кислорода.
Процесс фотокатализа в земных условиях и при микрогравитации (в миллион раз меньше, чем на Земле). Как видно, во втором случае количество появляющихся пузырьков газа больше.
Этот процесс может быть повернут вспять. Водород и кислород могут быть рекомбинированы (объединены) с использованием топливного элемента, в результате чего «вернется» затраченная на фотокатализ солнечная энергия и образуется вода. Таким образом, эта технология — реальный ключ к дальним космическим путешествиям.
Процесс с использованием фотокатализаторов является наилучшим вариантом для космических путешествий, поскольку оборудование весит намного меньше, чем необходимое для электролиза. В теории, работать с ним в космосе также проще. Отчасти это объясняется тем, что интенсивность солнечного света вне атмосферы Земли существенно выше, так как в последней достаточно большая часть света поглощается или отражается по пути к поверхности.
В новом исследовании ученые сбросили полностью рабочую экспериментальную установку для фотокатализа с башни высотой в 120 метров, создав условия, называющиеся микрогравитацией. По мере того, как объекты падают на Землю в свободном падении, эффект гравитации уменьшается (но сама она никуда не исчезает, поэтому это и называют микрогравитацей, а не отсутствием гравитации — прим. перев.), поскольку нет сил, которые компенсируют притяжение Земли — таким образом, на время падения в установке создаются условия как на МКС.
Экспериментальная установка и процесс эксперимента.
Исследователям удалось показать, что в таких условиях действительно возможно раcщепить воду. Однако, поскольку при этом процессе получается газ, то в воде образуются пузырьки. Важной задачей является избавление от пузырьков материала катализатора, поскольку они препятствуют процессу создания газа. На Земле гравитация заставляет пузырьки всплывать на поверхность (вода около поверхности плотнее пузырьков, что позволяет им плавать на поверхности), освобождая пространство у катализатора для образования следующих пузырьков.
При невесомости это невозможно, и пузырьки газа остаются на катализаторе или около него. Тем не менее, ученые скорректировали форму катализатора в наноразмерных масштабах, создав пирамидальные зоны, где пузырек может легко оторваться от вершины пирамиды и попасть в воду, не препятствуя процессу образования новых пузырей.
Но остается одна проблема. В отсутствие силы тяжести пузырьки останутся в жидкости, даже несмотря на то, что они вынуждены были покинуть катализатор. Гравитация позволяет газу легко выходить из жидкости, что имеет решающее значение для использования чистого водорода и кислорода. Без гравитации никакие пузырьки газа не плавают на поверхности и не отделяются от жидкости — вместо этого образуется аналог пены.
Это резко снижает эффективность процесса, блокируя катализаторы или электроды. Инженерные решения вокруг этой проблемы будут ключевыми для успешной реализации технологии в космосе — одно из возможных решений заключается в вращении установки: таким образом центробежные силы создадут искусственную гравитацию. Но, тем не менее, благодаря этому новому исследованию мы стали на шаг ближе к длительному космическому полету людей.
Астрофизики знают, что для звездообразования необходимо топливо. Современная теория гласит, что реки водорода — известные как «холодные потоки» — могут быть своего рода переправами водорода через межгалактическое пространство и, следовательно, подпитывать процесс звездообразования.
Спиральные галактики, как наш Млечный Путь, как правило, имеют довольно спокойный, но устойчивый темп звездообразования. Другие галактики, такие как NGC 6946, которая находится примерно в 22 млн. световых лет от Земли на границе созвездий Цефея и Лебедя, гораздо более активны в этом плане. Это поднимает вопрос о том, что является питательной средой для устойчивого формирования звезд в этой и аналогичных ей спиральных галактиках.
Предыдущие исследования ближайшего галактического пространства вокруг NGC 6946 с телескопа WSRT в Нидерландах выявили протянутое гало водорода. Однако, холодный поток мог быть сформирован водородом совсем из другого источника — газом из межгалактического пространства, который никогда не нагревался до высоких температур процессом рождения звезд.
Используя Green Bank Telescope (GBT), Пизано удалось обнаружить свечение, испускаемое нейтральным водородом, соединяющим NGC 6946 с его космическими соседями. Этот сигнал был просто ниже порога обнаружения других телескопов, но уникальные возможности GBT позволили ученому обнаружить это слабое излучение.
Астрономы уже давно предположили, что крупные галактики могут получать постоянный приток холодного водорода с помощью его откачки с других менее массивных компаньонов.
Дальнейшие исследования помогут подтвердить природу этого наблюдения и помогут пролить свет на возможную роль, которую холодные потоки играют в эволюции галактик.
Обобщающая схема «ВОДОРОД»
I.Водород – химический элемент
а) Положение в ПСХЭ
- порядковый номер №1
- период 1
- группаI(главная подгруппа «А»)
- относительная массаAr(Н)=1
- латинское название Hydrogenium (рождающийводу)
б) Распространённость водорода вприроде
Водород — химический элемент. | В земной коре (литосфера и гидросфера) – 1% по массе(10 местосреди всех элементов) |
АТМОСФЕРА — 0,0001% по числу атомов | |
Самый распространённый элемент во вселенной – 92% от числа всех атомов(основная составная часть звёзд и межзвёздного газа) |
Водород – химический элемент | В соединениях | Н 2 О – вода (11% по массе) |
СН 4 – газ метан (25% по массе) | ||
Органические вещества (нефть, горючие природные газы идругих) В организмах животных и растений (то есть в составе белков,нуклеиновых кислот, жиров, углеводов и других) В теле человека в среднем содержится около 7 килограммов водорода. в) Валентность водорода в соединениях II. Водород – простое вещество (Н 2) Получение
|