Меню

Как очистить космос от мусора

Как очистить орбиту от космического мусора?

Проблемы людей с мусором не заканчиваются на Земле — они следуют за нами в космос. Тысячи тонн брошенных спутников, отработанных ракетных частей и блуждающих фрагментов мусора теперь кружат вокруг нашей планеты на невероятных скоростях, и объем космического мусора растет с каждым годом.

С начала космической эры состоялось более 4900 запусков — более 6600 спутников припарковались на орбите. Из них 3600 остаются в космосе, из которых только 1000 функционирует нормально. Несомненно, мы вывели на орбиту довольно много мусора — и он вышел из-под нашего контроля. Примерно 65% орбитального мусора, входящего в каталог, произошло из-за столкновений на орбите.

Общее количество космического мусора сейчас составляет:

  • 30 000 обломков больше 10 сантиметров в поперечнике
  • 670 000 обломков больше 1 сантиметра
  • 170 миллионов обломков больше 1 миллиметра

Среди этих объектов отработанные верхние ступени ракет, списанные или сломанные спутники, пусковые адаптеры, крышки от объективов и даже тонкие медные провода — все, что сопровождает запуск ракеты. Объекты отслеживаются US Space Surveillance Network, которая составляет каталог космического мусора от 5 до 10 сантиметров на низкой околоземной орбите и до 1 метра на геостационарной орбите.

И все-таки оно вертится

10-сантиметровый кусок космического мусора может полностью разбить спутник, а сантиметровый кусочек полностью выведет из строя космический аппарат и пробьет щиты Международной космической станции. Даже миллиметровый объект может вывести из строя деликатные подсистемы.

И столкновения происходят. Первое непреднамеренное столкновение двух спутников произошло 10 февраля 2009 года в 776 километрах над Сибирью. Частный американский спутник связи Iridium 33 и российский военный спутник «Космос-2251» столкнулись со скоростью 11,7 км/с. Оба спутника были полностью разрушены и произвели более 2200 отслеживаемых фрагментов. Для сравнения: пассажирский авиалайнер летит в 80 раз медленнее.

Синдром Кесслера

В фильме «Гравитация» также был использован некий вымышленный сценарий. Русские использовали ракету для уничтожения одного из своих спутников. В результате появилось массивное поле обломков, которое вращается вокруг Земли раз в 90 минут, а также вызывает цепную реакцию — синдром Кесслера — сталкивается с другими спутниками и наращивает массу. Такая космическая лавина. И, как показал фильм, лучше не стоять у нее на пути.

На самом деле, такая ситуация уже происходила, только в значительно меньших масштабах. В 2007 году, в рамках демонстрации силы, китайские военные сбили одну из нерабочих метеорологических станций, случайно выбросив тысячи обломков мусора на орбиту.

Шансы на то, что начнется синдром Кесслера, растут с каждым годом, по мере увеличения количества барахла на орбите.

Как же все-таки убрать весь этот мусор? Сможем ли мы когда-нибудь убрать массивное поле обломков вроде того, что показали в «Гравитации»? Ответ да, однако потребуется недюжинная изобретательность и много терпения.

Немножко профилактики

Прежде чем мы займемся непосредственной очисткой, стоит поговорить о профилактике и ликвидации последствий. К примеру, мы можем начать делать спутники и космические станции более прочными. Усилить защиту от ударов (как космического мусора, так и метеорных тел). Спутники также должны быть более маневренными.

При этом мы должны сделать все возможное, чтобы предотвратить появление космического мусора. Во избежание столкновений, например, орбиты всех обломков мусора и возможных целей должны быть известны заранее. К счастью, эта информация предоставляется каталогом U.S. Strategic Command (USSSTRATCOM). Офис Европейского космического агентства, ответственный за космический мусор, предоставляет прогнозы событий и оценку риска столкновений в качестве сервиса для миссий ESA и третьих лиц.

Перспективные способы очистки орбиты Земли

Итак, пришло время очистить орбиту Земли от космического мусора. Ученые и инженеры предлагали массу разнообразных стратегий по активной уборке космического мусора, хорошие и не очень. Давайте пробежимся по списку наилучших кандидатов.

Старые добрые невод и гарпун

Более известная как ElectroDynamic Debris Eliminator (EDDE), эта идея заключается в том, чтобы отправить в космос спутник, вооруженный сетью и гарпуном. И действительно, захватывать спутники и другие объекты, сбившиеся с пути, можно обычной сетью. Этот план недорого стоит, удобен и может выехать с любой миссией на низкую околоземную орбиту.

Такие спутники могли бы маневрировать по всей НОО и убирать буквально любую цель. Более того, их можно было бы использовать многократно, а значит и убирать больше целей. Разработчики полагают, что EDDE мог бы убирать 136 объектов в три года — а 12 EDDE могли бы убрать 2465 объектов на НОО весом более 2 килограммов за семь лет.

Однако сработает такой план только с крупными объектами.

Космические воздушные шары

Зачем использовать сети, если есть воздушные шары? Эта идея называется Gossamer Orbit Lowering Device, или GOLD System, и были предложена Кристин Гейтс. Концепция использует очень большой и тонкий воздушный шар, который будет оборачивать объект и увеличивать его аэродинамическое сопротивление в несколько сотен раз, тем самым приводя к его падению в атмосферу Земли. GOLD System могла бы ускорить процесс естественного схода с орбиты у некоторых объектов с нескольких столетий до нескольких месяцев. Надувная система проста и эффективна, по крайней мере на бумаге.

Реактивный буксир

Для более крупных объектов можно было бы использовать отдельных суицидальных роботов, которые будут двигать спутники к повторному входу в атмосферу. Проект CleanSpaceOne от EPFL, например, включает спутниковый куб, который будет преследовать, захватывать и уничтожать космический мусор. Правда, стоимость будет непомерно высока — порядка 200 миллионов долларов для каждой миссии.

Читайте также:  Уроки рисования космоса гуашью

Солнечный парус

Surrey Space Centre работает над HybridSail — системой, объединяющей большой развертываемый отражающий парус с тросами для буксировки объектов с орбиты. Система будет сводить объекты с орбиты за счет аэродинамического сопротивления и обмена импульсом с заряженными тросами и ионосферной плазмой.

В этой схеме небольшой спутниковый куб должен состыковаться с куском космического мусора. Затем, используя магнитную систему ориентации, он бы стабилизировал крен, тангаж и рыскание объекта. Затем развернул бы тросы и парус 5 на 5 метров, положив начало фазе схода с орбиты.

Мы могли бы выпустить облако вольфрамовой пыли на орбиту для создания атмосферного сопротивления на орбитальных высотах. С уменьшением скорости целостность орбит тысяч обломков космического мусора была бы нарушена. Небольшие кусочки мусора постепенно сходили бы со своих орбит в течение нескольких десятилетий (решение не мгновенное).

Чтобы это сделать, нужно выпустить облако вольфрамовой пыли — крошечные частицы не более 30 мкм в поперечнике — на высоте порядка 1000 километров, создав относительно толстый слой мелких частиц материи, которые будут полностью окутывать планету. Вольфрам, который почти в два раза плотнее свинца, прибавит существенный вес любому объекту, за который зацепится.

Идея прекрасная — идеально подойдет для синдрома Кесслера — но в случае с крупными объектами работать не будет.

Более того, она может иметь потенциально катастрофические последствия на другие орбитальные объекты вроде функционирующих спутников. Также она может повредить чувствительное оборудование вроде солнечных панелей. Следовательно, ее можно рассматривать только как модель «перезагрузки» — полное очищение земной орбиты.

Этот вариант немножко странный: Ballistic Orbital Removal System. По мнению Джеймса Холлопетера из GIT Satellite, в космос можно отправить ракеты, заполненные водой. После того как они выгрузят свой груз на орбите, появится поле кристаллизовавшейся воды, в которое будет попадать орбитальный мусор, замедляться и сходить с орбиты. Звучит странно — но идея похожа на вариант с вольфрамовой пылью. Вода у нас водится в огромном изобилии, тогда как роботизированные спутники сложные, хрупкие и дорогие.

Перенаправление с помощью лазера

А вот работка наземным лазерам. Laser Orbital Debris Removal, или LODR, будет использовать мощные импульсные лазеры, которые будут стрелять с поверхности и создавать плазменные джеты на космическом мусоре. Это приведет к тому, что мусор будет замедляться и повторно входить в атмосферу, падая в океан. Технологии у нас уже есть, причем лет 15 уже, только вот по плану на один объект будет уходить до миллиона долларов.

Другая похожая идея — спутник, который может выстреливать электрически заряженные атомы или ионы, постепенно замедляя и стаскивая объект на Землю.

Вместо того чтобы захватывать объекты когтями, гарпунами и сетями, мы могли бы перемещать крупные объекты, не прикасаясь к ним. Кроме того, нам не обязательно сталкивать их в атмосферу — мы могли бы выводить их на геосинхронную орбиту.

Для этого спутники-уборщики должны быть оснащены электростатическим управлением и двигателями малой тяги, чтобы избегать каких-либо контактов. Как вариант приводится система GliDeR, которая будет использовать активные выбросы заряда и прямые потоки заряженных частиц в отношении мусора.

Космический мусоровоз

«Мой фантастический концепт — это система, состоящая из коллектора, распылителя сети и пункта утилизации на околоземной орбите. Учитывая то, что стоимость запуска может варьироваться от 4 до 5 тысяч долларов за фунт (8-10 тысяч за килограмм), не говоря уж о ценных металлах, используемых в производстве спутников, переработка может стать прибыльным делом однажды. Такой сборщик может работать на ядерной энергии и эффективных ракетах VASIMR для движения и сбора мусора».

Телескоп с лазером

Международная группа ученых предлагает прикрепить гигантский лазер к космическому телескопу и взрывать с его помощью мусор на орбите.

«Возможно, мы, наконец, нашли способ убрать головную боль быстро растущего объема космического мусора, опасного для космической деятельности, — говорит Тошиказу Ебисузаки из Калифорнийского университета в Ирвайне. — Мы считаем, что эта отдельная система может устранить большую часть сантиметрового мусора уже за пять лет эксплуатации».

Для устранения орбитального минного поля, в рамках предложения Acta Astronautica, за основу будет взят Extreme Universe Space Observatory (EUSO), новый японский космический телескоп, который присоединится к МКС в 2017 году. EUSO не был предназначен для утилизации мусора — по факту, его основная задача — регистрировать ультрафиолетовое излучение высокоэнергетических космических лучей, которые входят в атмосферу Земли в ночное время. Но мощная оптика телескопа и широкое поля зрения делают его идеальным инструментом для определения небольших скоростных обломков мусора, которые носятся вокруг МКС.

В сочетании с высокоэнергетическим лазером, EUSO становится отличным стрелком. Ебисузаки и его коллеги предлагают оснастить телескоп CAN лазерной системой, которая была спроектирована для нового поколения ускорителей частиц. Лазеры CAN используют массив из тысяч оптоволокон, которые действуют сообща и производят мощный плазменный импульс. Ебисузаки считает, что такой импульс способен замедлять кусок мусора, пока тот не упадет на орбиту и не сгорит в атмосфере Земли.

Читайте также:  Человек поет как космос

С глазами EUSO и силой CAN, Ебисузаки говорит, что мы сможем останавливать опасные частицы в полете и сталкивать их в атмосферу Земли. Ученые сейчас занимаются проведением небольшого эксперимента на МКС, используя 20-сантиметровую версию EUSO и мини-лазер CAN с 100 оптических волокон.

«Если все пойдет хорошо, — говорит Ебисузаки, — мы планируем установить полномасштабную версию на МКС, включив трехметровый телескоп и лазер с 10 000 волокон, которые будут способны сбивать мусор с орбиты на расстоянии до 100 километров. Заглядывая дальше в будущее, мы могли бы создать отдельную миссию и вывести ее на полярную орбиту на высоте 800 километров, где сосредоточено больше всего мусора».

Глядя на такие усилия по очистке замусоренного нами же космоса, можно понадеяться, что небо в ближайшее время станет гораздо чище. А после этого направим определенные усилия на уборку мусора на Земле.

Источник

Космический мусор собирается в «астероиды» и может угрожать Земле. Как с ним бороться?

NASA предупредило о приближении к Земле «астероида», состоящего из космического мусора. Рассказываем, из чего он состоит, насколько опасен и как мы собираемся бороться с проблемой космического мусора.

Что такое космический мусор?

Под космическим мусором подразумеваются все искусственные объекты и их фрагменты в космосе, которые уже неисправны, не функционируют и никогда более не смогут служить никаким полезным целям, но являются опасным фактором воздействия на функционирующие космические аппараты, особенно пилотируемые.

В некоторых случаях крупные или содержащие на борту опасные (ядерные, токсичные и т. п.) материалы объекты космического мусора могут представлять прямую опасность и для Земли — при их неконтролируемом сходе с орбиты, неполном сгорании при прохождении плотных слоев атмосферы Земли и выпадении обломков на населенные пункты, промышленные объекты, транспортные коммуникации.

Проблема засорения околоземного космического пространства «космическим мусором» как чисто теоретическая возникла по существу сразу после запусков первых искусственных спутников Земли в конце 50-х годов.

Официальный статус на международном уровне она получила после доклада Генерального секретаря ООН под названием «Воздействие космической деятельности на окружающую среду» 10 декабря 1993 года.

Из чего он состоит?

В настоящее время в районе низких околоземных орбит (НОО) вплоть до высот около 2 000 км находится, по разным оценкам, порядка 220 тыс. (300 тыс. по данным Управления ООН по вопросам космического пространства, октябрь 2009) техногенных объектов общей массой до 5 000 тонн.

На основе статистических оценок делаются выводы, что общее число подобных объектов поперечником более 1 см достаточно неопределенно и может достигать 60–100 тыс.

Лишь небольшая их часть (порядка 10%) была обнаружена, отслеживается и внесена в каталоги с помощью наземных радиолокационных и оптических средств. Например, на 2013 год каталог Стратегического командования США содержал 16 600 объектов (в основном размером более 10 см), большая часть которых была создана СССР, США и Китаем.

Российский каталог, ГИАЦ АСПОС ОКП (ЦНИИмаш), содержал в августе 2014 года 15,8 тыс. объектов космического мусора, а всего на околоземных орбитах находилось более 17,1 тыс. объектов (включая действующие спутники), столкновение с любым из которых приведет к полному разрушению КА.

Около 6% отслеживаемых объектов — действующие; около 22% объектов прекратили функционирование; 17% представляют собой отработанные верхние ступени и разгонные блоки ракет-носителей и около 55% — отходы, технологические элементы, сопутствующие запускам, и обломки взрывов и фрагментации.

Большинство этих объектов находится на орбитах с высоким наклонением, плоскости которых пересекаются, поэтому средняя относительная скорость их взаимного пролета составляет около 10 км/с.

Вследствие огромного запаса кинетической энергии столкновение любого из этих объектов с действующим космическим аппаратом может повредить его или даже вывести из строя. Примером может послужить первый случай столкновения искусственных спутников: Космос-2251 и Iridium 33, произошедший 10 февраля 2009 года; в результате оба спутника полностью разрушились, образовав свыше 600 обломков.

Наиболее засорены те области орбит вокруг Земли, которые чаще всего используются для работы космических аппаратов. Это НОО, геостационарная орбита (ГСО) и солнечно-синхронные орбиты (ССО).

Чем опасен космический мусор?

Крупные объекты, находящиеся на низких околоземных орбитах, постепенно замедляются и через какое-то время входят в атмосферу. Некоторые их фрагменты достигают поверхности планеты. Небольшие объекты космического мусора попадают в плотные слои атмосферы практически ежедневно, более крупные — несколько раз в месяц. По данным Nicholas Johnson (НАСА), почти ежегодно отдельные фрагменты спутников или ракет достигают поверхности.

13 ноября 2015 года произошло падение одного из фрагментов ракеты, ранее участвовавшей в лунной программе. Фрагмент размером 1–2 м и плотностью 0,1 г/см³ вошел в атмосферу в районе Индийского океана примерно в 60 км от побережья Шри-Ланки.

По некоторым мнениям, это был первый зафиксированный случай возвращения на Землю космического мусора с высокой эллиптической орбиты, апогей которой примерно в 2 раза превышает расстояние от Луны до Земли. Объект WT1190F 13 ноября вошел в атмосферу Земли, где благополучно сгорел.

По словам ученых, к Земле движется небесное тело, имеющее земное происхождение. Ученые национального космического ведомства США отмечают, что небесное тело искусственного происхождения приблизится к Земле на расстояние, равное 10% дистанции от Земли до Луны. Об этом стало известно в начале февраля 2021 года.

Читайте также:  Раскраска для девочек 11 лет прикольные космос

Национальное аэрокосмическое агентство США признало в «астероиде» обломок ракеты-носителя Centaur миссии Surveyor 2. Космический мусор стал искусственным спутником нашей планеты, попав в ловушку гравитации. Ученые, проведя моделирование, выяснили, что обломок ракеты в скором времени покинет орбиту Земли, совершив экстремально близкое приближение.

Стоит отметить, что искусственный астероид достаточно давно летает в космосе, так как Surveyor 2 был запущен в 1966 году. Ученым еще предстоит выяснить, действительно ли это так.

Методы уборки и уничтожения космического мусора

Эффективных практических мер по уничтожению космического мусора на орбитах более 600 км (где не сказывается очищающий эффект от торможения об атмосферу) на настоящем уровне технического развития человечества пока не разработано.

Также рассматривались проекты спутников, испаряющих обломки мощным лазерным лучом или меняющих их орбиту ионными пучками, которые должны тормозить обломки для их входа в атмосферу с частичным или полным сгоранием в ней или, в случае аппаратов на геостационарной орбите, уводить их на орбиту захоронения, или наземные лазеры (Laser broom), либо аппарат, который будет собирать мусор для его дальнейшей переработки.

Вместе с тем актуальность задачи обеспечения безопасности космических полетов в условиях техногенного загрязнения околоземного космического пространства (ОКП) и снижения опасности для объектов на Земле при неконтролируемом вхождении космических объектов в плотные слои атмосферы и их падении на Землю стремительно растет.

Международное сотрудничество по решению проблемы «космического мусора» развивается по следующим приоритетным направлениям:

  • Экологический мониторинг ОКП, включая область геостационарной орбиты (ГСО): наблюдение за «космическим мусором» и ведение каталога объектов «космического мусора».
  • Математическое моделирование «космического мусора» и создание международных информационных систем для прогноза засоренности ОКП и ее опасности для космических полетов, а также информационного сопровождения событий опасного сближения КО и их неконтролируемого входа в плотные слои атмосферы.
  • Разработка способов и средств защиты космических аппаратов от воздействия высокоскоростных частиц «космического мусора».
  • Разработка и внедрение мероприятий, направленных на снижение засоренности ОКП.

Поиск и отслеживание космического мусора

Существует множество инструментов контроля околоземных орбит с целью поиска объектов на ней. Их можно разделить на радиолокационные и оптические.

Обнаружение орбитальных объектов может быть также дополнительной функцией универсальных инструментов исследования космического пространства или оборонных систем. Существует ряд специализированных инструментов.

В СССР и США были созданы мощные инструменты отслеживания космического пространства. Также ряд специализированных инструментов существует в Европе и других странах.

Работает ряд национальных программ отслеживания околоземных объектов и борьбы с космическим мусором. Для координации их деятельности создано Inter-Agency Space Debris Coordination Committee.

Небольшое, но потенциально полезное нововведение могло бы помочь очистить небо от космического мусора: оно позволит крошечным спутникам дешево и легко самоуничтожиться в конце своей миссии.

В технологии используется новое топливо — йод — в электрическом двигателе, который контролирует высоту спутника над Землей. Йод дешевле и использует более простые технологии, чем традиционные виды топлива. В отличие от многих традиционных ракетных топлив, йод нетоксичен и остается твердым при комнатной температуре и давлении. Это упрощает и удешевляет работу на Земле.

При нагревании он превращается в газ, не проходя через жидкую фазу, что делает его идеальным для простой двигательной установки. Кроме того, он плотнее традиционного топлива, поэтому на борту спутника занимает меньшие объемы.

Российские ученые предложили очистить низкую околоземную орбиту Земли с помощью космического корабля. На его борту предусмотрены особые модули с двигателями.

Эти модули будут прикрепляться к объектам космического мусора и отодвигать их. Что касается геостационарной орбиты, предпочтительным способом ее очистки был бы буксирующий космический корабль, считают ученые.

Его задача — транспортировать объекты космического мусора на «орбиту уничтожения» (высотой в 600 км, где объекты постепенно уничтожаются от торможения об атмосферу).

Космический корабль-сборщик, предложенный командой для очистки околоземных орбит, имеет длину 11,5 м, диаметр 3 м и вес чуть более 4 тонн. Такой коллектор может нести от 8 до 12 модулей с двигателями на борту.

Для перемещения ступеней легкового корабля потребуется от 50 до 70 кг топлива, для перевозки ступени «Зенит-2» массой 9 тонн — около 350. Общий вес такого сборщика на старте составит от 8 до 12 тонн.

Современные ускорители могут легко вывести такой груз на любую орбиту высотой до 1000 км. После того, как в коллекторе закончатся модули, он присоединится к последней ступени бустера, переместится с ним в верхний слой атмосферы и сгорит.

  • Японский стартап для очистки мусора

Японский стартап планирует запуск устройств, которые с марта 2021 года будут находить и устранять космический мусор. Если все пройдет успешно, то они отправят полноценную миссию.

Японский стартап Astroscale отправил свой космический аппарат ELSA-d на космодром Байконур в Казахстане. Там инженеры интегрируют его с ракетой «Союз», запуск которого запланирован на март 2021 года.

В компании отметили, что это важнейший полет для них, поскольку это первая демонстрация технологий компании по борьбе с мусором — одной из важнейших проблем в области обеспечения устойчивости космической деятельности.

Малоразмерное устройство продемонстрирует ключевые технологии: прицеливание, которое поможет определять местонахождение мусора с помощью датчика прицеливания на основе GPS.

Эти данные будут использоваться так называемым «сервисным» спутником, который может перехватить кусок космического мусора.

Источник

Adblock
detector