Как определяют массу луны
Коэффициент пропорциональности G = наз. гравитационной постоянной или постоянной тяготения. Её находят из физического эксперимента с крутильными весами, позволяющими определить силу гравитац. взаимодействия тел известной массы.
В случае свободного падения тел сила F, действующая на тело, равна произведению массы тела на ускорение свободного падения g. Ускорение g может быть определено, напр., по периоду T колебаний вертикального маятника:
, где l — длина маятника. На широте 45 o и на уровне моря g= 9,806 м/с 2 .
Подстановка выражения для сил земного притяжения в ф-лу (1) приводит к зависимости
, где
— масса Земли, а
— радиус земного шара. Таким путём была определена масса Земли
г. Определение массы Земли явл. первым звеном в цепи определений масс др. небесных тел (Солнца, Луны, планет, а затем и звёзд). Массы этих тел находят, опираясь либо на 3-й закон Кеплера (см. Кеплера законы ), либо на правило: расстояния к.-л. масс от общего центра масс обратно пропорциональны самим массам. Это правило позволяет определить массу Луны. Из измерений точных координат планет и Солнца найдено, что Земля и Луна с периодом в один месяц движутся вокруг барицентра — центра масс системы Земля — Луна. Расстояние центра Земли от барицентра равно 0,730
(он расположен внутри земного шара). Ср. расстояние цeнтpa Луны от центра Земли составляет 60,08
. Отсюда отношение расстояний центров Луны и Земли от барицентра равно 1/81,3. Поскольку это отношение обратно отношению масс Земли и Луны, масса Луны
г.
Массу Солнца можно определить, применив 3-й закон Кеплера к движению Земли (вместе с Луной) вокруг Солнца и движению Луны вокруг Земли:
, (2)
где а — большие полуоси орбит, T — периоды (звёздные или сидерические) обращения. Пренебрегая по сравнению с
, получим отношение
, равное 329390. Отсюда
г, или ок.
.
Аналогичным путём определяют массы планет, имеющих спутников. Массы планет, не имеющих спутников, определяют по возмущениям, к-рые они оказывают на движение соседних с ними планет. Теория возмущённого движения планет позволила заподозрить существование тогда неизвестных планет Нептуна и Плутона, найти их массы, предсказать их положение на небе.
Массу звезды (помимо Солнца) можно определить со сравнительно высокой надёжностью только в том случае, если она явл. физ. компонентом визуально-двойной звезды (см. Двойные звезды ), расстояние до к-рой известно. Третий закон Кеплера в этом случае даёт сумму масс компонентов (в ед. ):
,
где а» -большая полуось (в секундах дуги) истинной орбиты спутника вокруг главной (обычно более яркой) звезды, к-рую в этом случае считают неподвижной, Р — период обращения в годах, — параллакс системы (в секундах дуги). Величина
даёт большую полуось орбиты в а. е. Если можно измерить угловые расстояния
компонентов от общего центра масс, то их отношение даст величину, обратную отношению масс:
. Найденная сумма масс и их отношение позволяют получить массу каждой звезды в отдельности. Если компоненты двойной имеют примерно одинаковый блеск и сходные спектры, то полусумма масс
даёт верную оценку массы каждого компонента и без дополнит. определения их отношения.
Для др. типов двойных звезд (затменно-двойных и спектрально-двойных) имеется ряд возможностей приблизительно определить массы звёзд или оценить их нижний предел (т.е. величины, меньше которых не могут быть их массы).
Совокупность данных о массах компонентов примерно ста двойных звёзд разных типов позволила обнаружить важную статистич. зависимость между их массами и светимостями (см. Масса-светимость зависимость ). Она даёт возможность оценивать массы одиночных звёзд по их светимостям (иначе говоря, по их абс. звёздным величинам ). Абс. звёздные величины М определяются по ф-ле: M = m + 5 + 5 lg — A(r) , (3) где m — видимая звёздная величина в выбранном оптич. диапазоне (в определённой фотометрич. системе, напр. U, В или V; см. Астрофотометрия ),
— параллакс и A(r) — величина межзвёздного поглощения света в том же оптич. диапазоне в данном направлении до расстояния
.
Если параллакс звезды не измерен, то приближённое значение абс. звёздной величины можно определить по её спектру. Для этого необходимо, чтобы спектрограмма позволяла не только узнать спектральный класс звезды, но и оценить относительные интенсивности нек-рых пар спектр. линий, чувствительных к «эффекту абс. величины». Иначе говоря, сначала необходимо определить класс светимости звезды — принадлежность к одной из последовательностей на диаграмме спектр-светимость (см. Герцшпрунга-Ресселла диаграмма ), а по классу светимости — её абс. величину. По полученной таким образом абс. величине можно найти массу звезды, воспользовавшись зависимостью масса-светимость (этой зависимости не подчиняются лишь белые карлики и пульсары ).
Ещё один метод оценки массы звезды связан с измерением гравитац. красного смещения спектр. линий в её поле тяготения. В сферически-симметричном поле тяготения оно эквивалентно доплеровскому красному смещению , где
— масса звезды в ед. массы Солнца, R — радиус звезды в ед. радиуса Солнца, а
выражено в км/с. Это соотношение было проверено по тем белым карликам, к-рые входят в состав двойных систем. Для них были известны радиусы, массы и истинные лучевые скорости vr, являющиеся проекциями орбитальной скорости.
Невидимые (тёмные) спутники, обнаруженные около нек-рых звёзд по наблюдённым колебаниям положения звезды, связанным с её движением около общего центра масс (см. Невидимые спутники звезд ), имеют массы меньше 0,02 . Они, вероятно, не явл. самосветящимися телами и больше похожи на планеты.
Из определений масс звёзд выяснилось, что они заключены примерно в пределах от 0,03 до 60
. Наибольшее количество звёзд имеют массы от 0,3
до 3
. Ср. масса звезд в ближайших окрестностях Солнца
, т.е.
10 33 г. Различие в массах звёзд оказывается много меньшим, чем их различие в светимостях (последнее может достигать десятков млн.). Сильно отличаются и радиусы звёзд. Это приводит к разительному различию их ср. плотностей: от
до
г/см 3 (ср. плотность Солнца 1,4 г/см 3 ).
Массу рассеянного звёздного скопления можно определить, сложив массы всех его членов, светимости к-рых определяют по их видимому блеску и расстоянию до скопления, а массы — по зависимости масса-светимость.
Массу шарового звёздного скопления далеко не всегда можно оценить путём подсчёта звёзд, т.к. в центральной области большинства таких скоплений изображения отдельных звёзд на фотографиях, полученных с оптимальной экспозицией, сливаются в одно светящееся пятно. Есть методы оценки общей массы всего скопления, основанные на статистич. принципах. Так, напр., применение теоремы о вириале (см. Вириала теорема ) позволяет оценить массу скопления (в
) по радиусу скопления r (пк) и ср. квадратич. отклонению
лучевой скорости отдельных звёзд (в км/с) от ср. её значения (т.е. от лучевой скорости скопления как целого):
.
Если же подсчёт звёзд — членов шарового скопления возможен, то общую массу скопления можно определить как сумму произведений , где
— функция светимости этого скопления, т.е. число звёзд, приходящихся на различные интервалы абс. звёздных величин Mi (обычно их подсчитывают в интервалах, равных 1 m ), a
— масса, соответствующая данной абс. звёздной величине Mi по зависимости масса-светимость. Т.о., общая масса скопления
, где сумма взята от самых ярких до самых слабых членов скопления.
Метод определения массы Галактики исходит из факта вращения Галактики. Устойчивость вращения позволяет предположить, что центростремит. ускорение для каждой звезды, в частности для Солнца, определяется притяжением вещества Галактики в пределах солнечной орбиты. Солнце притягивается к галактич. центру с силой
, где R0 — расстояние Солнца от ядра Галактики, равное
см. Сила F0 сообщает Солнцу ускорение
, к-рое равно центробежному ускорению Солнца
(без учёта влияния внеш. части Галактики и при условии эллипсоидальности поверхностей равной плотности по внутр. её части). Собственная галактич. скорость Солнца (т.н. круговая скорость на расстоянии R0 от центра)
220 км/с, отсюда
см/с 2 . Масса Галактики, без учёта её частей, внешних по отношению к галактической траектории Солнца,
г. Масса Галактики в сферич. объёме с радиусом
15 кпк, согласно подобным расчётам, равна
. При этом учитывается также масса всей диффузной (рассеянной) материи в Галактике.
Масса спиральной галактики может быть определена по результатам изучения её вращения, напр. из анализа кривой лучевых скоростей, измеренных в различных точках большой оси видимого эллипса галактики. В каждой точке галактики центростремит. сила пропорциональна массе более близких к центру галактики областей и зависит от закона изменения плотности галактики с удалением от её центра. Спектроскопич. наблюдения в оптич. диапазоне позволили построить кривые вращения спиральных галактик до расстояний 20-25 кпк от центра (а у ряда галактик высокой светимости до 40 кпк и более). Вплоть до этих расстояний круговая скорость не уменьшается с увеличением R, т.е. масса галактики продолжает расти с расстоянием. Т.о., в галактиках имеется скрытая масса . Масса невидимого (несветящегося) вещества галактик может в 10 и более раз превосходить массу светящегося вещества; предположительно, скрытая масса может существовать в форме очень слабых маломассивных звёзд или чёрных дыр или в форме элементарных частиц (напр., нейтрино , если они обладают массой покоя).
Для медленно вращающихся галактик, какими явл., напр., эллиптич. галактики, трудно получить кривые лучевых скоростей, но зато можно по расширению спектр. линии оценить ср. скорость звёзд в системе и, сопоставив её с истинными размерами галактики, определить её массу. Чем больше ср. скорость звёзд, тем больше должна быть масса галактики (при одинаковых размерах). Зависимость между массой, размерами галактики и ср. скоростью звёзд вытекает из условия стационарности системы.
Ещё один способ оценки массы галактик-компонентов двойных систем аналогичен методу оценки масс компонентов спектрально-двойных звёзд (ошибка не превышает 20%). Используют также установленную статистич. зависимость между массой и интегр. светимостью галактик различного типа (своего рода зависимость масса-светимость для галактик). Светимость определяется по видимой интегр. звёздной величине и расстоянию, к-рое оценивается по красному смещению линий в спектре. Ср. масса галактик, входящих в скопление галактик, оценивается по числу галактик скопления и его общей массе, к-рую статистически определяют по дисперсии лучевых скоростей галактик, подобно тому как оценивается общая масса звёздного скопления на основе теоремы о вириале.
Известные ныне массы галактик заключены в пределах от
10 5 (т.н. карликовые галактики) до 10 12
(сверхгигантские эллиптич. галактики, напр. галактика М 87), т.е. отношение масс галактик доходит до 10 7 .
Точность определения масс астрономич. объектов зависит от точности определения всех величин, входящих в соответствующие ф-лы. Масса Земли определена с погрешностью 0,05%, масса Луны
0,1%. Погрешность определения массы Солнца также составляет
0,1%, она зависит от точности определения астрономической единицы (ср. расстояния до Солнца). Вообще, в значит. степени точность определения массы зависит от точности измерения расстояния до космического объекта , в случае двойных звёзд — от расстояния между ними, от линейных размеров тел и т.д. Массы планет известны с погрешностью от
0,05 до
0,7%. Массы звёзд определены с погрешностью от 20 до 60%. Неуверенность определения масс галактик можно характеризовать коэфф. 2-5 (масса может быть в неск. раз больше или меньше), если надёжно определено расстояние до них.
Лит.:
Струве О., Линде Б., Пилланс Э., Элементарная астрономия, пер. с англ., 2 изд., М., 1967; Сагитов М.У., Постоянная тяготения и масса Земли, М., 1969; Климишин И.А., Релятивистская астрономия, М., 1983.
Источник