НОД Познавательное развитие. Познавательно – исследовательская деятельность с детьми подготовительной группы. Форма организации: экспериментирование. Тема. Отражение света или как поймать солнечный луч.
план-конспект занятия по окружающему миру (подготовительная группа)
НОД Познавательное развитие. Познавательно – исследовательская деятельность с детьми подготовительной группы.
Форма организации: экспериментирование.
Тема. Отражение света или как поймать солнечный луч.
Скачать:
Вложение | Размер |
---|---|
otrazhenie_sveta_ili_kak_poymat_solnechnyy_luch.docx | 20.52 КБ |
Предварительный просмотр:
НОД Познавательное развитие. Познавательно – исследовательская деятельность с детьми подготовительной группы.
Форма организации: экспериментирование.
Тема. Отражение света или как поймать солнечный луч.
Цель. Сформировать представление о свойстве света отражаться
Задачи. Сформировать представление о свойстве света отражаться. Дать понятие о светящихся телах и телах, отражающих свет.
Методы: МШ, эксперименты с зеркалами.
Предварительная работа: Вспомнить о способности некоторых твердых тел отскакивать от гладкой твердой поверхности , об отражении звука (эхо).
(методы и приёмы)
Мотивация детей к деятельности
В: Как поведет себя резиновый мяч, если его бросить на пол?
Д: Он подпрыгнет. Он отскочит от пола.
В: Что еще может отскакивать от твердой поверхности?
Д: Металлические предметы, пластмассовые игрушки.
Горох от стенки отскакивает. Мама всегда говорит: «Как от стенки горох».
Пульки отскакивают. Мне чуть в глаз не попала.
В: А кроме предметов, что может отскакивать, отражаться от других предметов?
Простановка цели детьми
В: Но, оказывается, свойством отражаться обладает еще и свет. Свет отражается от поверхности так же, как от нее отскакивает мяч. Луч света падает на какую-либо поверхность и отскакивает от нее. Лучше всего свет отражается от зеркала. Вы все играли с солнечными зайчиками, и знаете это. Можно поймать солнечный зайчик?
Совместная работа с детьми по нахождению средств деятельности
В: А я попытаюсь.
Воспитатель с помощью зеркальца ловит солнечного зайчика, пущенного ребенком.
В: Что произошло?
Воспитатель вместе с детьми восстанавливает цепочку и зарисовывает на доске схему.
- Солнечный луч упал на зеркальце Саши.
- Отразился и упал на стену.
- Снова отразился, и тут его перехватило зеркальце воспитателя.
В свободное время дети вместе с воспитателем могут поиграть с солнечными зайчиками, пытаясь построить как можно более длинную цепочку передачи солнечного луча.
В: Итак, свет падает на окружающие нас предметы и отражается от них. Если отраженный свет попадает нам в глаза, мы видим эти предметы. Почему в темноте ничего не видно?
Д: Потому что темно.
Потому что нет солнца.
Лампочка не горит.
Света нет, он не отражается от предметов и нам в глаза не попадает.
В: Значит, почему мы видим предметы?
Д: Потому что они отражают свет.
В: Мы доказали, что свет отражается от твердой поверхности. А от жидкости он может отражаться?
Может. В сказке «Морозко» Иван посмотрелся в реку и увидел, что он в медведя превратился.
А я каталась с папой на лодке и видела, как облака в реке отражались, и деревья.
В: Молодцы! Свет может отражаться и от воды.
Почти все предметы не светятся сами, а отражают свет. А есть светящиеся объекты. Приведите примеры.
Д: Солнце, лампочка, фонарик, костер.
В: А еще звезды. А вот Луна сама не светит. Она только отражает свет Солнца.
А как вы думаете, в космосе есть свет?
Д: Нет. Там пустота, и свет ни от чего не отражается. В космосе темно.
Самостоятельная работа детей по апробации способов деятельности
В: Молодцы! Что же мы сегодня узнали?
Д: Мы узнали, что свет может отражаться. Мы видим, потому что свет отражается от предметов и попадает нам в глаза.
Воспитатель предлагает детям смоделировать процесс отражения света с помощью зеркал [1] .
Источник
Естественный свет в доме. Стратегии природного освещения
Экологичная усадьба: В наши дни люди возвращаются к идеям близости с природой, к экологически чистым материалам и условиям жизни, и стремятся использовать природное освещение по максимуму.
Освещение дома солнечным светом
Отношение человека к природному освещению в жилище не раз менялось в ходе исторического развития — были времена, когда свет в доме зависел исключительно от природных явлений — солнца и огня. В прошлом веке ситуация была обратная — свое жилище и его интерьер принято было скрывать от солнечного света и от взглядов за плотными портьерами и тюлем в несколько слоев. Но в наши дни люди возвращаются к идеям близости с природой, к экологически чистым материалам и условиям жизни, и стремятся использовать природное освещение по максимуму.
Одна из причин интереса к освещению своего дома солнечным светом понятна — это растущие цены на энергоносители. Поэтому эргономичный проект и дизайн дома активно направлены на снижение потребления электроэнергии. Очень эффективный способ сэкономить — использовать солнечный свет для освещения жилья. Солнечная энергия вносит в жилище не только уют и здоровье жильцам, а еще и позволяет экономить на электричестве немалые средства — от 40 до 75% потребления ежемесячно.
О влиянии солнечного света в доме на здоровье говорят и современные науки — о биоритмах человека, звучащих согласно Солнцу и вращению планеты, а также от качеств естественного света — его мощности, направления, цвета. О целебном воздействии солнечного света в жилище знали и древние архитекторы, строившие здания с определенной ориентацией по сторонам света.
Современный дом должен быть построен согласно требований к освещенности:
- Два часа тридцать минут каждые сутки — это минимальное время для присутствия прямого солнца в жилых комнатах все три солнечных сезона — весну, лето и осень. Данный минимум времени проект дома должен обеспечить, используя планировку и объемные решения, а также ориентацию здания.
- Хорошо освещаться все комнаты в доме не могут — это нереально, и обязательно есть помещения, выходящие на север и запад. Но 60% жилых помещений дома должны иметь хорошее солнечное освещение.
- Площади светопрозрачных оконных заполнений должны составлять не менее 20% от площади пола.
- Окно располагается на определенной высоте относительно потолка. Верхняя граница оконного проема должна находиться от уровня пола не ниже, чем на 190 см. Высокие комнаты требуют и высоких окон.
- Максимальное расстояние между оконными проемами = 150 см. Максимальное расстояние от оконного проема до поверхности стены, расположенной напротив окна = 600 см.
- Все комнаты дома не могут выходить на восточные и южные стороны с хорошей инсоляцией. Поэтому приоритеты устанавливают для помещений с наибольшей посещаемостью. Детская комната, гостиная и рабочий кабинет располагаются в зонах здания, имеющих наибольшую освещенность.
- В комнатах имеются функциональные зоны — например, это поверхность обеденного или рабочего стола, игровые места для детей. Зонирование помещений также служит световому принципу — наибольшая освещенность нужна рабочим зонам, а места для отдыха могут располагаться и не в самой светлой зоне комнаты.
Тактические задачи для обеспечения освещения жилища солнечным светом
Основные виды и способы организации естественного освещения:
- Классические оконные проемы обеспечивают проникновение света по всему контуру дома — боковое освещение
- Освещение сверху — свет попадает в дом через кровельные конструкции и оконные проемы с увеличенной высотой и/или расположенные в верхних уровнях стен
- Для помещений больших площадей и глубины: обеспечивают двусветным освещением, располагая оконные проемы особым образом — ярусно
Данная тактика имеет приложение только на проектных стадиях, при разработке объемно-планировочного решения дома, когда выбираются конструкции и назначаются линейные размеры и габариты помещений. Если дом уже построен, тактику «пути к Свету» придется усложнить:
- Если имеется нехватка солнечного света, то оконные проемы возможно увеличивать по площади. Возможно и делать новые проемы, при условии проверки конструкций на несущую способность, поскольку окна придется прорезать в наружных стенах. Если дом каркасный, задача немного упрощается. Возможно, потребуется усиление стен на участках новых оконных проемов.
- В комнатах активно используют отраженный свет, увеличивая площадь отражающих поверхностей. Зеркала, полировка и глянцевые отделки мебели и стен отражают свет под разными углами и усиливают общую освещенность. Блестящий пол может направить свет из окон на светлый потолок, а от многоярусного потолка рассеивание света по помещению будет еще эффективнее. Отражающие способности отделок стен, пола и потолков нормируются: коэффициент отражения для стеновых поверхностей равен 65-70%; для пола около 40%; для потолков отражение должно быть наилучшим — не менее 80%.
- Светлые отделки, оттенки и мебель, весь интерьер комнаты решает задачу освещенности — чем больше светлых тонов, тем визуально помещения кажутся светлее. Физический аспект тоже есть — количество отраженного и рассеянного света увеличивается, если окрасить стены в светлые оттенки, причем теплые тона кажутся ярче.
- Сад и кусты сирени за окнами не всегда возможны. Если света мало, то от закрывающих окна веток приходится избавляться.
Привлекая в дом солнечный свет в целях экономии и максимального уюта, следует помнить о дозировке — солнечные районы и без того обеспечивают в жилье очень много света, с сопутствующим нагревом. Но если комната получилась слишком сильно освещенной, глянцевые поверхности создают дискомфорт, сверкая лучами полуденного солнца в глаза, можно решить проблему просто. Обычные жалюзи или портьеры для временного затенения. Особенно хороши разновидности римских штор, дающие возможность закрывать стекла уровнями, сверху или снизу. Общая освещенность будет сохранена, а острых лучей можно избежать.
Природное освещение по сторонам света и его связь с цветами интерьера
Цветовой и световой дизайн тесно связаны. Цветовая палитра для конкретного интерьера выбирается с учетом ориентации помещения по сторонам света. Причем искусственное освещение тоже является необходимостью — в вечернее время, а иногда и в дождливую и снежную погоду. Гармония и связь двух видов освещения позволит не только создать световой комфорт в жилище, но и экономить ресурс светильников. Современные системы «умного освещения» имеют датчики присутствия и сами регулируют освещенность, включая искусственный свет только при реальной необходимости в нем.
Западная сторона.
Свет приходит во второй половине дня. Вечерний свет имеет более уравновешенную, «завершенную» природу по сравнению с утренним. Оттенки для отделки комнаты с окнами на запад целесообразны в нейтральной палитре. Контраст и тени нужны, но основная линия — спокойная, теплая гамма.
При ориентации окон на северо-запад оттенки выбираются теплее, больше золотистых, желтых и кремовых, немного компенсирующих нехватку солнца. Юго-западное направление предполагает смещение основной гаммы к бирюзовым, зеленоватым и голубым, серебристо-серым и холодноватым пастельным оттенкам.
Восточная сторона.
Утреннее Солнце — самое живое и полезное, самое радостное. Обновление и надежды с первыми солнечными лучами достаются комнатам на восток. Но вечер в данных помещениях может стать весьма мрачным.
Резкость перехода от света к полумраку выравнивают, применяя яркие контрасты теплого и холодного цвета.
Позитивные сочетания дает золотой с сиреневыми, бирюза и чирок с терракотой, коралловыми и мягкими оранжевыми.
Северная сторона.
Холодновато в комнате с окнами на север будет всегда. Свет приглушен, ощущение стабильности, но с оттенком настороженности. Коррекция к позитиву возможна применением горячей гаммы красного — от каштановых и кофейных до оранжевого и желтых. Очень приятны в северных залах яркие насыщенные коричневые цвета.
Немного неожиданно действует белый цвет — он добавляет комнате тепла на уровне подсознательных ощущений, особенно теплые белые — сливочные и кремовые оттенки. Но если все станет «голубым и зеленым» в северной комнате, то такая песня может заставить озябнуть. Светло-голубой и зеленый цвета не для северных помещений.
Южная сторона.
Самые чудесные комнаты, конечно в контексте северных и центральных климатических районов. Южные районы имеют другую специфику, и порой от солнышка там приходится активно защищаться. Но южная комната в центральной полосе России считается лучшей — светлой, теплой и солнечной.
В комнате на Юг нет запретов для цветового оформления, только законы цветовых сочетаний, личные вкусы и авторские предпочтения. Можно все, а коррекцию можно выполнить, установив на окна жалюзи или оформив проем портьерами, фасадными или комнатными маркизами.
Важными факторами светового уюта для вечернего времени будут также правильный выбор и рассчитанная установка светильников, а также выбор лампочек с приемлемой цветовой температурой. опубликовано econet.ru
Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.
Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:
Источник
Белее некуда: краска, отражающая до 98.1% солнечного света
Изобретение велосипеда зачастую описывает процесс создания чего-то, что уже создано. Другими словами, бессмысленный труд. Однако в научном мире существует множество трудов, которые можно описать этой фразой. Тем не менее многократное создание одного и того же велосипеда разными людьми позволяет взглянуть на него под разным углом, тем самым усовершенствовав его. Подобная ситуация сложилась и с материалами, способными отражать большой процент солнечного тепла, дабы получить пассивное охлаждение без необходимости в системах кондиционирования. Эта тема уже затрагивалась нами ранее, но ученые из университета Пердью (США) решили взглянуть на эту проблему по-своему, создав при этом ультрабелую краску, способную отражать до 98.1% солнечных лучей. В чем секрет нового лакокрасочного материала, как он создавался, и будет ли его использование на практике действительно выгодным и экологичным? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.
Основа исследования
Лейтмотивом исследований, связанных со снижением экономической и экологической нагрузки на охлаждение, является радиационное (излучательное) охлаждение. Данный метод заключается в пассивном охлаждении за счет специальных устройств, материалов, покрытий и прочего. Чаще всего для реализации радиационного охлаждения применяются сложные многослойные структуры или отражающие металлические слои. Эффект от них, конечно, имеется, однако такой вариант не особо практичен и выгоден.
Попытки реализовать радиационное охлаждение с помощью одного слоя краски тоже часто заканчиваются провалом, ибо в таком случае этот слой будет весьма толстый, а эффект охлаждения незначительный.
Однако, радиационное охлаждение все же имеет свои преимущества, если правильно его реализовать. К примеру, в отличие от активного охлаждения, которое требует электричества, радиационное охлаждение использует атмосферное прозрачное окно («небесное окно») для испускания теплового излучения непосредственно в глубокое небо без потребления энергии. Если тепловое излучение через небесное окно превышает поглощение солнечного света, то на поверхности может сохраняться холодная окружающая среда даже под прямыми солнечными лучами.
Ранее уже были попытки создать краску, способную реализовать радиационное охлаждение. Был вариант, в котором использовался тонкий слой TiO2 на алюминиевой подложке. В зимний день такая структура демонстрировала температуру на 2 °C ниже температуры окружающей среды. Однако, по словам ученых, это, вероятно, было связано скорее с подложкой, а не с самой краской.
Были и варианты без каких-либо красок, основанные на многослойных структурах. В одном из таких вариантов использовались металлический слой, полиэтиленовый аэрогель и делигнифицированная древесина. Очевидно, что подобные конструкции крайне сложны и дороги в реализации, не говоря уже о большой толщине результирующего покрытия.
Другими словами, методов реализации радиационного охлаждения существует довольно много, каждый из них обладает рядом преимуществ и недостатков. Авторы рассматриваемого нами сегодня труда решили попытать удачу в этой области и создали еще один метод пассивного охлаждения, основанный на сочетании пленки из наночастиц BaSO4 и краски, содержащей эти же наночастицы.
Результаты исследования
Выбор BaSO4 в качестве главного героя данного труда был неслучайным. BaSO4 имеет широкую запрещенную зону, что хорошо для малого солнечного поглощения, и фононный резонанс на 9 мкм, что хорошо для высокой излучательной способности. Приняв во внимание эти особенности, удалось создать пленку из наночастиц BaSO4 с высоким коэффициентом отражения солнечного света (97.6%) и коэффициентом излучения прозрачного окна (0.96).
Для повышения стабильности и надежности пленки была создана акриловая краска, содержащая наночастицы BaSO4 (60% от объема). Высокая концентрация наночастиц и их широкое распределение по размерам позволяют снизить показатель преломления BaSO4, что приводит к коэффициенту отражения солнечного света в 98.1% и излучательной способности в 0.95. По заявлению ученых, их BaSO4-акриловая краска имеет показатель качества 0.77, который является одним из самых высоких среди подобных структур для радиационного охлаждения. При этом их вариант надежен, легок в использовании, а также прекрасно имплементируется в промышленный процесс производства красок.
Изображение №1
Коммерческие белые краски (TiO2-акриловая) не могут достичь полноценного охлаждения из-за высокого поглощения в УФ-диапазоне (из-за ширины запрещенной зоны TiO2 в 3.2 эВ) и ближнем инфракрасном (NIR) диапазоне (из-за акриловой абсорбции).
В данном труде была изготовлена пленка из частиц BaSO4 толщиной 150 мкм на кремниевой пластине (1а) в совмещении с коммерческой белой краской. На СЭМ-снимках (СЭМ от сканирующий электронный микроскоп) пленки BaSO4 (1b) видно образование воздушных пустот. Интерфейсы между наночастицами BaSO4 и воздушной полостью увеличивают рассеяние фотонов в пленке, тем самым увеличивая общий коэффициент отражения солнечного света.
Для повышения надежности структуры необходимо обеспечить устойчивость BaSO4 пленки к воздействию окружающей среды. Именно для этого и была использована акриловая краска. Однако, краска на базе BaSO4 (1c) обладает низким коэффициентом преломления, в отличие от TiO2. Чтобы исправить это, концентрация частиц BaSO4 в краске была повышена до 60%, что значительно выше, чем в промышленных красках.
Изображение №2
Как показано на изображении 2a, для достижения успешного охлаждения ниже температуры окружающей среды необходимы высокая степень отражения солнечного света и высокая степень излучательной способности. Для достижения этого необходимо было уменьшить поглощение в УФ-диапазоне. Это было достигнуто за счет BaSO4, обладающего запрещенной зоной в
А за счет фононного резонанса на 9 мкм возможно проектирование частиц определенного размера так, чтобы лишь один слой был необходим для достижения как отражательной способности, так и излучательной. В результате оптимальный размер частиц BaSO4 составил 400 нм. В результате пленка BaSO4 обладала коэффициентом отражения солнечного света в 97.6% и коэффициентом излучения в 0.96 (2b). Эти показатели лучше тех, что демонстрируют коммерчески доступные теплоотражающие краски (коэффициент отражения солнечного света от 80% до 91%).
Ученые отмечают, что использованная в их структуре кремниевая подложка была всего лишь фундаментом, и никак не участвовала в повышении показателей охлаждения. На графике 2c показано сравнение коэффициента отражения различных структур: с подложкой (разный материал и толщина) и без нее. Как мы можем видеть, использование подложки никак не влияет на охлаждающую способность всей структуры.
Что касается краски, то вариант с высоким содержанием частиц BaSO4 показал лучшие результаты: коэффициент отражения солнечного света — 98.1%; коэффициент излучения — 0.95. Физика, лежащая в основе высокой степени отражения, была смоделирована посредством метода Монте-Карло* (2d).
Метод Монте-Карло* — метод изучения случайных процессов, когда оные описываются математической моделью с использованием генератора случайных величин. Модель многократно обсчитывается, а на основе полученных данных рассчитываются вероятностные характеристики изучаемого процесса.
Толщина слоя краски также была установлена посредством моделирования и практических опытов. При толщине 400 мкм достигались максимальные значения показателей отражения и излучения, тогда как при других толщинах они были немного меньше: при 200 мкм — 95.8%; при 224 мкм — 96.2%; при 280 мкм — 96.8% (2e).
Изображение №3
Далее были проведены полевые испытания, дабы воочию понаблюдать за работой созданной структуры. Опыты проводились 14-16 марта 2018 года в городе Вест-Лафайет (штат Индиана) при пиковом солнечном излучении 907 Вт/м 2 и влажности 42% (3a).
Температура образца упала на 10.5 °C ниже температуры окружающей среды в течение ночи и оставалась на 4.5 °C ниже температуры окружающей среды даже при пиковом солнечном излучении. Для сравнения, коммерческие варианты краски нагревались на 6.8 °C выше температуры окружающей среды при таких же условиях опыта.
Дополнительные опыты в городе Рино (штат Невада) 28 июля 2018 года показали, что мощность охлаждения достигла в среднем 117 Вт/м 2 за суточный период при 10% влажности (3b).
Мощность теплового излучения увеличивалась с повышением температуры поверхности в дневное время, что компенсирует более высокое поглощение солнечной энергии. Таким образом, оценка мощности охлаждения без учета температуры поверхности может быть неверным показателем эффективности охлаждения.
Термоэмиссионная мощность пленки BaSO4 при 15 °C достигала 106 Вт/м 2 . Дополнительно были проведены полевые испытания BaSO4 краски (3c и 3d), которая оставалась холоднее окружающей среды в течение суток при пиковом солнечном излучении в 993 Вт/м 2 и влажности около 50% (показатель получен в полдень).
Поскольку созданная BaSO4 краска предназначена для наружного применения, необходимо было также проверить ее надежность. Для этого были проведены тесты на истирание, атмосферные воздействия на открытом воздухе и определение вязкости.
Изображение №4
Во время тестов на истирание (4a) на образец помещали пару абразивных кругов с нагрузкой 250 г на каждый круг. Обновление кругов производилось каждые 500 циклов, между чем измерялась потеря массы образца. Коэффициент износа определялся как потеря массы (мг) на каждые 1000 циклов. Результирующий коэффициент износа BaSO4 краски достигал 150, что сравнимо с коммерческими красками (104). Тест влияния окружающей среды проводился довольно просто: образец помещали под открытым небом на 3 недели (4b). В течение всего времени коэффициент отражения солнечного света и коэффициент излучения оставались практически неизменными. Вязкость BaSO4 краски также была измерена и показала значения, схожие с оным для коммерческих вариантов (4c).
Для более детального ознакомления с нюансами исследования рекомендую заглянуть в доклад ученых.
Эпилог
В данном труде ученые в очередной раз обратили свое внимание на вопрос радиационного охлаждения, который соблазняет своей экологичностью и экономичностью по сравнению с классическими методами. Их идея заключается в использовании микроскопических частиц BaSO4 и создании двухслойной структуры. Один слой это пленка из этих частиц, второй — акриловая краска, в состав которой входят опять же частицы BaSO4.
В результате полученная пленка смогла показать коэффициент отражения солнечного света 97.6%, а коэффициент излучения 0.96. Но это еще не максимум, что может разработанная структура. Совместив пленку из BaSO4 с краской, в состав которой также входит BaSO4, удалось достичь коэффициента отражения солнечного света 98.1% и коэффициента излучения 0.95.
Полевые испытания показали, что температура поверхности, покрытой BaSO4 краской, была на 4.5 °C ниже температуры окружающей среды, а средняя мощность охлаждения при этом составляла 117 Вт/м 2 .
По надежности и износостойкости полученная краска ничем не уступает своим коммерческим собратьям. Кроме того, имплементация данной разработки в промышленность не требует больших затрат или специфического оборудования. Другими словами, создавать и использовать такой материал будет довольно просто и выгодно.
Благодарю за внимание, оставайтесь любопытствующими и хорошей всем рабочей недели, ребята. 🙂
Немного рекламы
Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас, оформив заказ или порекомендовав знакомым, облачные VPS для разработчиков от $4.99, уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2697 v3 (6 Cores) 10GB DDR4 480GB SSD 1Gbps от $19 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).
Dell R730xd в 2 раза дешевле в дата-центре Maincubes Tier IV в Амстердаме? Только у нас 2 х Intel TetraDeca-Core Xeon 2x E5-2697v3 2.6GHz 14C 64GB DDR4 4x960GB SSD 1Gbps 100 ТВ от $199 в Нидерландах! Dell R420 — 2x E5-2430 2.2Ghz 6C 128GB DDR3 2x960GB SSD 1Gbps 100TB — от $99! Читайте о том Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
Источник