Когда появились планеты
Для образования планеты требуется немало тяжелых элементов, или металлов, как именуют астрономы все элементы тяжелее гелия и водорода. Эти тяжелые элементы не берутся из ниоткуда. Они являются результатом синтеза внутри звезд, а в космос их выбрасывают взрывы сверхновых. Для того, чтобы собрать материал, достаточный для образования Солнечной системы, многие звезды должны умереть. Но все же сколько материала надо для образования планеты и когда во Вселенной его набралось достаточно?
Земля родилась из материала, собравшегося в протопланетный диск около молодого Солнца 4.54 миллиарда лет назад. Довольно давно, но по сравнению с возрастом Вселенной – не очень. Насколько раньше Земли могла сформироваться первая планета? Недавно считалось, что процесс образования тяжелых элементов в звездах очень медленный, и звездная алхимия превращения элементов не могла дать достаточно материала до 6-7 миллиардов лет после Большого взрыва. Это предположение подтверждалось находками экзопланет, все звезды которых имели столько же или больше металлов, как и Солнце, а значит, были моложе нашей звезды. Однако дело здесь было отнюдь не в фундаментальных законах, которым подчиняется Вселенная. Наш метод наблюдения диктовал результат. До запуска телескопа Кеплер в 2009 году практически все экзопланеты находились по их гравитационному воздействию на звезду. Разумеется, с таким методом часто попадались газовые гиганты на низких орбитах. Запуск орбитального телескопа, предназначенного для поиска экзопланет, изменил ситуацию. На его счету уже более 2300 кандидатов, найденных методом прохода. Треть находимых Кеплером планет – небольшие, твердые миры, гиганты размером с Юпитер или больше составляют 11% от общего числа.
Системы звезд с малым содержанием металлов могут оказаться удачным местом для поисков жизни, так как отсутствие газовых гигантов дает ей дополнительные шансы. Большая часть газовых гигантов относятся к горячим Юпитерам – очень близким к звездам планетам. Образуются, однако, такие планеты заметно дальше, а потом медленно мигрируют ближе к звезде. Это создает возмущения в планетарной системе, и то возмущение, которое гиганта неспешно тянет к центру, меньшую планету, на которой может существовать жизнь, быстро выкидывает в межзвездное пространство. Это соображение приводит к выводу, что жизнь чаще встречалась в молодой Вселенной, когда тяжелых элементов было мало и потому почти не было газовых гигантов. Впрочем, процессы образования гигантов могут оказаться не такими, как их представляют астрономы. Сотрудники Института астрономии имени Макса Планка в 2019 году нашли гигантскую планету около очень старой звезды HIP 13044, а в этом году еще более древнюю звезду HIP 11952, родившуюся 12.8 миллиарда лет назад, но имеющую газового гиганта. Содержание тяжелых элементов в этих звездах очень мало, но иногда и его хватает для газового гиганта. Выше мы уже упомянули, что твердая планета в таких условиях появиться могла тем более. Одновременно расширяется зона поиска обитаемых планет для каждой галактики. В центрах много металлов, но зато много газовых гигантов и взрывов сверхновых. На задворках же металлов меньше, но зато и соседи спокойнее. Потенциально обитаемая зона галактик расширяется.
Остается определить предел наличия металлов для образования Земли и время, когда он был достигнут. К примеру, если бы Солнце имело в десять раз меньше тяжелых элементов, Земля точно не смогла бы образоваться. Впрочем, прирост количества тяжелых элементов в молодой Вселенной шел быстро. Звезды рождались и умирали с огромной частотой, некоторые оценки показывают звездообразование в 4000 солнечных масс в год через миллиард лет после Большого взрыва. Для Млечного пути сейчас это число составляет около десятка. Хоть каждая звезда молодой Вселенной была бедна тяжелыми элементами и производила немного, общий вклад был огромным. Поэтому неудивительно, что в старой галактике, которую мы видим такой, какой она была 12 миллиардов лет назад, было найдено содержание тяжелых элементов, аналогичное солнечному. Более того, в отличие от Млечного пути, металлов в этой галактике много и на задворках. Это единичный пример, который, скорее всего, объясняется аномально мощным звездообразованием, но он уже доказывает возможность появления Земли очень давно.
Написание курсовой работы – мероприятие серьезное, очень ответственное и требующее больших временных затрат. Даже у самого добросовестного студента иногда могут возникнуть сложности. Услуга курсовые на заказ – вот выход из ситуации!
Источник
Как образовалась Солнечная система?
Нашей Солнечной системе 4.5 миллиарда лет, и мы живем в относительно спокойное время: Солнце находится в середине жизненного пути, все планеты и большая часть комет давно приобрели устойчивые орбиты, а падение на нашу планету крупного астероида — из ряда вон выходящее событие, о котором долго пишут различные СМИ.
Но как мы пришли к такому благополучию? Как образовалось Солнце и планеты рядом с ним? Как планеты приобрели свои орбиты? Формирование Солнечной системы является сложной головоломкой для современной астрономии и потрясающей демонстрацией работы чудовищных сил гравитации, действующих в огромных временных рамках. Так что давайте разбираться.
Разумеется, Солнечная система не возникла из ничего. Все звезды образуются в результате коллапса туманностей, которые представляют собой рыхлые облака газа и пыли, и наше Солнце — и Солнечная система — ничем в этом плане не отличаются от других звезд и планетных систем. Астрономы называют такое образование «досолнечной туманностью», и, конечно, ее давно уже нет, но ученые видели достаточно звездных систем на различных стадиях формирования по всей галактике, чтобы получить достоверную общую картину.
Однако сама по себе туманность является достаточно стабильной и не будет коллапсировать в Солнечную систему без определенного «стимула», который должен заставить ее начать сжиматься. В нашем случае мы можем поблагодарить соседний взрыв сверхновой, чья ударная волна смяла досолнечную туманность, заставив ее сжаться.
Туманности — места активного звездообразования.
При этом исследователи могут вполне обоснованно сказать, что такая сверхновая взорвалась относительно недалеко по космическим меркам, потому что при таких звездных взрывах образуется большое количество определенных радиоактивных элементов, которые обычно не обнаруживаются внутри досолнечных туманностей, однако мы их наблюдаем в нашей Солнечной системе.
В результате в какой-то момент переход от туманности к Солнечной системе стал необратимым. В течение многих миллионов лет туманность сжималась и нагревалась, в конечном итоге достигнув точки, когда протосолнце было окружено тонким, быстро вращающимся диском из газа и пыли.
И тут началось самое интересное.
Четыре с половиной миллиарда лет назад наше Солнце еще не было такой яркой звездой, как сегодня. Оно было компактное и очень, очень горячее, но все же еще не достигло критической плотности и температуры, необходимых для поддержания ядерного синтеза в его ядре.
И, пока Солнце было на этой эмбриональной стадии, планеты начали свое медленное вальсирующее формирование. Ближе к юной звезде жара и света хватало, чтобы в этих областях оставался только каменистый материал: лед испарился, а различные газы, такие как водород и гелий, просто улетели вглубь молодой Солнечной системы. Оставшимся каменистым кускам ничего не оставалось, как медленно слипаться под действием гравитации, образуя все более крупные сгустки.
Протосолнце с протопланетами на художественном изображении.
В конце концов, по прошествии достаточного количества времени (а у Вселенной возрастом больше 13 миллиардов лет свободного времени, очевидно, хватает), эти кусочки сформировали планетезимали, маленькие зародыши планет. Их было много, и это было довольно жестокое время для нашей Солнечной системы, поскольку эти планетезимали сталкивались, разрушались и преобразовывались бесчисленное количество раз. Наша собственная Земля тогда столкнулась с объектом размером почти с Марс, и обломки от этого удара в конечном итоге стали Луной.
Однако за пределами области, которая в конечном итоге стала поясом астероидов, формирование планет происходило по-другому. Там было достаточно холодно, чтобы лед мог «выжить», позволяя ядрам планет вырастать до огромных размеров за короткий промежуток времени.
Затем эти большие ядра с мощной гравитацией стали притягивать окружающий материал, в основном как раз водород и газообразный гелий, улетевшие из внутренней части Солнечной системы. В итоге эти миры стали окутываться плотной пеленой атмосферы — так и родились планеты-гиганты.
Поздняя тяжелая бомбардировка
Передвинемся на полмиллиарда лет вперед. Температура и давление в ядре Солнца наконец-то достигли достаточных значений, чтобы начался ядерный синтез, который продолжается до сих пор. При этом гравитация нашего светила стабилизировала внутренние каменистые планеты на своих орбитах.
Страшное время для внутренних планет — их буквально закидывало астероидами на протяжении сотен миллионов лет.
Но вот внешние газовые гиганты были окружены роями обломков, оставшихся от хаотического процесса строительства планет. В результате начались гравитационные танцы поистине космических масштабов.
Астрономы подозревают, что четыре планеты-гиганта нашей Солнечной системы — Юпитер, Сатурн, Уран и Нептун — изначально сформировались гораздо ближе друг к другу, чем они находятся сегодня, и гравитационные взаимодействия с оставшимися вокруг них обломками заставили их сменить орбиты. На передел нашей Солнечной системы потребовались сотни миллионов лет, и ученых есть несколько возможных объяснений, как он мог произойти.
В одном из сценариев Юпитер и Сатурн двигались внутрь, к Солнцу, что заставило Уран и Нептун наоборот отодвинуться наружу. В другом сценарии планеты внешней Солнечной системы играли в игру «гравитационное перекидывание горячей картошки» с еще одной дополнительной пятой гигантской планетой, которая в конечном итоге была или полностью выброшена из Солнечной системы, или же находится сейчас на ее задворках (и может являться Девятой планетой). Ну и в последнем сценарии Юпитер мог приблизиться к орбите Марса, прежде чем вернуться обратно, нарушив тем самым орбиты остальных внешних миров.
Каким бы способом не происходила перестановка планет-гигантов, она вызвала настоящий хаос в Солнечной системе. Астрономы считают, что мигрирующие внешние планеты дали начало эпохе, названной поздней тяжелой бомбардировкой — из-за гравитационных возмущений начались интенсивные столкновений комет и астероидов во внутренней Солнечной системе около 4 миллиардов лет назад, и продолжался этот хаос несколько сотен миллионов лет.
Смещения орбит газовых гигантов нарушили стабильность всего оставшегося «строительного материала» в Солнечной системе, либо отправив его на далекие орбиты на замерзших окраинах нашей звездной системы (откуда различные кометы временами все же прилетают ближе к Солнцу), либо наоборот «запульнув» его внутрь, тем самым создав проблемы для каменистых планет.
Мы живем во времена стабильного Солнца, и оно еще долго не будет меняться.
Несмотря на эту катастрофическую бомбардировку, на самом деле все было не так уж плохо: процессия комет, устремившихся во внутреннюю часть Солнечной системы, в изобилии доставила воду на каменистые миры, потенциально помогая создать жизнь на Земле — разумеется, уже после того, как наша звездная система снова стала стабильной.
После окончания тяжелой бомбардировки около 3.8 миллиардов лет назад наша Солнечная система пришла в практически современное состояние: Солнце стало иметь почти современный вид, только светило чуть ярче. Все планеты заняли стабильные орбиты. Разве только газовые гиганты продолжали обзаводиться спутниками, «выдергивая» нестабильные булыжники из пояса астероидов или Койпера.
Что касается будущего, то сложно предсказать поведение системы из миллионов движущихся компонентов через несколько миллиардов лет. Но, вполне возможно, наша Солнечная система останется стабильной еще очень долгое время, пока в Солнце не кончится топливо и оно не превратится в красного гиганта, тем самым убив внутренние планеты.
Однако, возможно, глобальные изменения произойдут и раньше: так, за несколько миллиардов лет орбита Марса может стать более вытянутой и заходить за орбиту Земли, что может привести к катастрофическим последствиям. Аналогичная проблема может произойти и с Меркурием: его орбита может вытянуться, из-за чего гравитационное взаимодействие с Венерой может выкинуть его из Солнечной системы.
В любом случае, все эти возможные события произойдут крайне не скоро даже по меркам Вселенной, так что нам остается только радоваться, что мы живем в спокойный отрезок существования Солнечной системы.
Источник
Как появились планеты?
На сегодня мне известны две теории происхождения планет. Первая из них — общепринятая, старая (Дирак, Лаплас), хорошо известная Небулярная теория, предполагающая, что и Солнце, и её планеты произошли из одной газовой туманности. Вторая, менее известная — Теория захвата, основана на гипотезе, что Солнце и планеты образовались в результате гравитационного взаимодействия молодого диффузного Солнца с пролетающей рядом массивной звездой.
⊛ Небулярная теория утверждает, что около 4,5 млрд лет назад планеты образовались в результате аккреционных процессов в дискообразном облаке газа и пыли на орбите вокруг центральной протозвезды (Солнце), которая в свою очередь сформировалась из гравитационного коллапса гигантского молекулярного облака размером
Однако эта гипотеза никаким образом не может объяснить наблюдаемый парадокс распределения углового момента в Солнечной системе — Солнце составляя 99% массы Солнечной системы содержит только 0,5% углового момента системы. Планеты же, составляя менее 1% от общей массы Солнечной системы, содержат 97% полного углового момента. Современная интерпретация Небулярной теории дополнена неким изощрённым механизмом (механической и магнитной) передачи углового момента из внутренних областей Солнечной системы внешним областям. Лично мне кажется, что там слишком много свободных параметров, что естественно вызывает недоверие.
⊛ Теория захвата (Capture theory) объясняет формирование и эволюцию планет посредством приливного взаимодействия между массивной звездой и диффузной протозвездой — Солнцем, внутри единого кластера. Массивная звезда проходила мимо Солнца, вытягивая из нее приливную нить (см рисунок). Гравитационно-неустойчивая нить (нити) впоследствии распалась, конденсируясь в протопланеты. Протопланеты, притянутые Солнцем, сохранялись на гелиоцентрических орбитах.
Теория захвата естественным образом снимает проблему углового момента Солнечной системы, предсказывает расположение и эволюцию планетарных орбит, пояса Койпера и не противоречит многочисленным современным данным по экзопланетам. Для деталей рекомендую обзор из архива.
P.S. В связи с вопросом в комментарии — вот радиоизображение (от ALMA) тройной звездной системы, формирующейся внутри пылевого диска Персейя.
Согласно Теории захвата, именно гравитационные приливные силы соседних звезд являются механизмом формирования планетарных систем.
Источник