Меню

Как происходит нагрев от солнца

Упрощенная модель солнечного нагрева поверхностей

Недавно на работе возник вопрос, касающийся промышленной безопасности. Кто-то из инженеров, комментирующий вопросы промышленной безопасности задал вопрос: «Возможна ли вспышка паров дизельного топлива инициированная нагревом крышки в резервуаре запаса дизельного топлива». Вопрос не так прост, из практики мы знаем, что хлопки паров горючих жидкостей под крышками резервуаров не происходят. Но технически газовоздушная смесь под крышкой есть, почему бы не произойти хлопку при воспламенении паров от нагревшейся под солнцем крышки? Т.к. обосновать невозможность такого хлопка не получится (никаких мероприятий по предотвращению образования взрывоопасной концентрации, вроде плавающей крыши, системе улавливания легких фракций и т.п. не предусматривается) остается попробовать обосновать то, что необходимые для этого условия не создаются. Температура вспышки паров — 55 С. Никакие существующие методики расчета нагрева тел под действием солнечных лучей мне неизвестны. Но вообще, задача выглядит несложной. Достаточно составить уравнение теплового баланса и решить его. Уравнению теплового баланса и посвящена эта статья. Оно составилось не сразу, промежуточные шаги я здесь не рассматриваю. Разумеется, это уравнение подходит и для приближенного расчета нагрева любых поверхностей (автомобилей, крыш и т.п.).

Поступление тепла

Прямое и рассеянное солнечное излучение

Так называемая солнечная постоянная составляет 1353 Вт/кв.м., но это тепловой поток солнечного тепла падающий на землю из космоса. Величина солнечной прямой и рассеянной солнечной радиации на горизонтальную поверхность при безоблачном небе на широте 52 с.ш. в полдень равна 800 Вт/кв.м. В более южных районах тепловой поток может доходить до 1000 Вт/кв.м. Примем коэффициент, учитывающий отражающую способность тел (альбедо) зависит от типа и цвета поверхности. В нашем случае используем коэффициент 0.7. Поверхность крыши резервуара 800 кв.м. и он находится под прямым солнечным излучением (исходя из необходимости учета худших возможных условий, да и по генплану затенять его нечем).

Нагрев поверхности солнечными лучами выражается формулой:

$$Q_ = Q_ \times A \times \mu$$

$Q_$ — поток солнечного излучения, 800 $\frac<Вт><кв.м>$

A — площадь поверхности, участвующей в излучении тепла, кв.м

$\mu$ — коэффициент отражения поверхности (альбедо).

Это верно для резервуара не находящегося в тени. Если он затенен, то потребуется еще один коэффициент, учитывающий процент затенения поверхности, а также поступления тепла от рассеянного солнечного излучения. Коэффициенты отражения для разных поверхностей можно найти в мини-справочнике.

Потери тепла

Потери тепла от конвекции

Предположим, что температура наружной поверхности резервуара под солнцем — 52$^<\circ>$С, а температура окружающего воздуха — 32$^<\circ>$С. Уравнение потери тепла от конвекции:

$$Q_ = h_c \times A \times \Delta T$$

$h_c$ — коэффициент конвективной передачи тепла, $\frac<Вт><м^2 \times К>$

A — площадь поверхности, участвующей в конвекционном обмене, кв.м

$\Delta T$ — разница температур между поверхностью и окружающей средой, К

$Q_$ — собственно потери тепла в единицу времени, Вт

Коэффициент конвекционной передачи тепла зависит от материала поверхности, вида конвекционной среды (газ или жидкость разных видов) и других параметров. Для твердых тел, теряющих тепло при свободной конвекции воздуха коэффициент $h_c$ меняется в диапазоне 5. 25 $\frac<Вт><м^2 \cdot K>$. Для поверхности из малоуглеродистой стали в воздушной среде коэффициент конвективной передачи тепла составит 7,9 $\frac<Вт><м^2 \cdot K>$. Коэффициент конвекционной передачи многократно возрастает при движении конвективной среды. Например, при ветре. Так что нам становится прохладней, когда дует ветер не только потому, что мы потеем и ветер улучшает испарение пота, но и потому что ветер многократно увеличивает конвекционный отвод тепла от нашего тела.

Возьмем для расчета температуру окружающего воздуха 32$^<\circ>$С и температуру поверхности резервуара из малоугеродистой стали 52$^<\circ>$С.

Потери тепла излучением

$$Q_ = \epsilon \times \sigma \times A \times (T^4_h — T^4_)$$

$\epsilon$ — константа излучения объекта (или черного тела). Для поверхности, окрашенной маслянной краской $\epsilon = 0.85$.

$\sigma = 5.6703 \times 10^<-8>$ — Константа Стефана-Больцмана, $\frac<Вт><м^2 \cdot К^4>$;

A — площадь поверхности, участвующей в излучении тепла, кв.м.

Теперь можно составить уравнение теплового баланса для стационарных условий.

Другими словами, поступление тепла равно сумме потерь тепла от радиации и конвекции. Здесь не учитывается тепло, которое расходуется на нагрев самой поверхности. Стационарность условий — приближение, наша прверхность будет постоянно немного нагреваться и охлаждаться, но для нашего случая это не слишком важно.

Читайте также:  Как молиться богу солнца

Если подставить все выражения то получим следующее:

$$Q_ \times A \times \mu = h_c \times A \times (T_h — T_) + \epsilon \times \sigma \times A \times (T^4_h — T^4_)$$

Как видно, A можно было бы и сократить, но мы этого делать не будем. Большая проблема в том, что решить это уравнение, найдя неизвестную Th будет сложно. Собственно я вообще не представляю, как решить это уравнение. К счастью, есть MathCAD, который отлично решает такие уравнения численно. Прорешав уравнение получим ответ, для нашего случая температуру поверхности 68 С. Вот файл для расчетов, чтобы можно было повторить их самостоятельно. Его можно открыть в MathCAD от 14 версии. Думаю, в следующий раз я выложу расчет в Excel, как более доступный для читателей.

Источник

Как работает и греет Солнце

Солнце — главный источник энергии на Земле. Без него невозможным было бы существование жизни. И хотя все буквально вертится вокруг Солнца, мы очень редко задумываемся над тем, как работает наша звезда.

Структура Солнца

Чтобы понять, как работает Солнце, сначала нужно разобраться в его структуре.

  • Ядро.
  • Зона лучистого переноса.
  • Конвективная зона.
  • Атмосфера: фотосфера, хромосфера, корона, солнечный ветер.

Диаметр солнечного ядра составляет 150—175 000 км, около 20—25% солнечного радиуса. Температура ядра достигает 14 млн градусов по Кельвину. Внутри постоянно происходят термоядерные реакции с образованием гелия. Именно в ядре в результате данной реакции выделяется энергия, а так же тепло. Остальная часть Солнца нагрета этой энергией, она проходит сквозь все слои до фотосферы.

Зона лучистого переноса находится над ядром. Энергия переносится с помощью излучения фотонов и их поглощения.

Над зоной лучистого переноса находится конвективная зона. Здесь перенос энергии осуществляется не переизлучением, а переносом вещества. С высокой скоростью более холодное вещество фотосферы проникает в конвективную зону, а излучение из зоны лучистого переноса поднимается на поверхность — это и есть конвекция.

Фотосфера — это видимая поверхность Солнца. Из этого слоя исходит большая часть видимого излучения. В фотосферу уже не проникает излучение более глубоких слоев. Средняя температура слоя достигает 5778 К.

Хромосфера окружает фотосферу, она имеет красноватый оттенок. Из поверхности хромосферы постоянно происходят выбросы — спикулы.

Последняя внешняя оболочка нашей звезды — корона, состоящая из энергетических извержений и протуберанцев, образующих солнечный ветер, распространяющийся к самым дальним уголкам солнечной системы. Средняя температура короны — 1—2 млн К, но есть участки с 20 млн К.

Солнечный ветер — это поток ионизированных частиц, распространяющийся до границ гелиосферы со скоростью около 400 км/с. Многие явления на Земле связаны с солнечным ветром, например, полярное сияние и магнитные бури.

Солнечное излучение


Плазма Солнца обладает высокой электропроводностью, что способствует появлению электрических токов и магнитных полей.

Солнце — самый сильный излучатель электромагнитных волн в мире, который дает нам:

  • ультрафиолетовые лучи;
  • видимый свет — 44% солнечной энергии (преимущественно желто-зеленый спектр);
  • инфракрасные лучи — 48%;
  • рентгеновское излучение;
  • радиационное излучение.

Лишь 8% энергии отводится на ультрафиолетовое, рентгеновское и радиационное излучение. Видимый свет расположен между лучами инфракрасного и ультрафиолетового спектра.

Также Солнце является мощным источником радиоволн нетепловой природы. Помимо всевозможных электромагнитных лучей излучается постоянный поток частиц: электронов, протонов, нейтрино и так далее.

Все виды излучения оказывают свое влияние Землю. Именно это влияние мы ощущаем.

Воздействие УФ лучей

Ультрафиолетовые лучи воздействуют на Землю и все живые существа. Благодаря им существует озоновый слой, так как УФ-лучи разрушают кислород, который модифицируется в озон. Магнитное поле Земли в свою очередь формирует озоновый слой, который, как ни парадоксально, ослабляет силу воздействия УФ.

На живые организмы и окружающую среду ультрафиолет влияет многогранно:

  • способствует выработке витамина D;
  • обладает антисептическими свойствами;
  • вызывает появление загара;
  • усиливает работу кроветворных органов;
  • повышает свертываемость крови;
  • увеличивается щелочной резерв;
  • дезинфицирует поверхности предметов и жидкости;
  • стимулирует обменные процессы.
Читайте также:  Славянские знаки солнца тату

Именно ультрафиолетовое излучение способствует самоочищению атмосферы, устраняет смог, частицы дыма и пыли.

В зависимости от широты сила воздействия УФ излучения сильно изменяется.

Воздействие ИК лучей: почему и как Солнце греет

Все тепло на Земле — это инфракрасные лучи, которые появляются благодаря термоядерному синтезу водорода с образованием гелия. Эта реакция сопровождается огромным выбросом лучистой энергии. До земли доходит порядка 1000 Ватт на квадратный метр. Именно за это ИК излучение очень часто называют тепловым.

Удивительно, но Земля выступает в роли инфракрасного излучателя. Планета, а также облака поглощают ИК лучи, а затем переизлучают эту энергию обратно в атмосферу. Такие вещества как водяной пар, капли воды, метан, диоксид углерода, азот, некоторые соединения фтора и серы излучают ИК лучи во всех направлениях. Именно благодаря этому имеет место парниковый эффект, который поддерживает поверхность Земли в постоянно подогретом состоянии.

Инфракрасные лучи не только нагревают поверхности предметов и живых существ, но и оказывают другое влияние:

  • обеззараживают;
  • улучшают метаболизм;
  • стимулируют кровообращение;
  • снимают болевые ощущения;
  • нормализуют водно-солевой баланс;
  • укрепляют иммунитет.

Почему зимой Солнце греет слабо

Так как Земля вращается вокруг Солнца с некоторым наклоном оси, в разное время года происходит отклонение полюсов. В первой половине года Северный полюс повернут к Солнцу, в во второй — Южный. Соответственно, меняется угол воздействия солнечной энергии, а также мощность.

То полушарие, которое повернуто к Солнцу, получает больше электромагнитных и других лучей, нагревается сильнее — наступает лето. Полушарие, которое отвернуто от солнца получает падающие вскользь лучи — наступает зима. Из-за измененного угла падения поверхность и атмосфера прогреваются слабее.

Из-за изменения угла наклона зимой Солнце проходится низко над горизонтом. Соответственно, его лучи проходят длинный путь сквозь атмосферу. Зимой тепловая энергия растрачивается сильнее, за счет того что инфракрасные лучи встречают на своем пути и обогревают в 4-6 раз больше воздуха. До поверхности планеты доходит значительно меньше тепла, поэтому кажется, что Солнце почти не греет.

Так как прозрачность воздуха достаточно высока, видимая часть солнечного излучения доходит в любое время года практически в неизменном количестве.

Источник

Почему в космосе холодно, если Солнце горячее

Солнце находится на расстоянии около 150 миллионов километров от Земли, но мы можем чувствовать его тепло каждый день. Удивительно, как горящий объект издалека может излучать тепло на таком большом расстоянии.

Мы не говорим о температурах, которые едва регистрируют его присутствие. В 2019 году температура в Кувейте достигла 63 ° C под прямыми солнечными лучами. Если вы будете стоять при таких температурах в течение длительного периода, вы рискуете умереть от теплового удара.

Но больше всего озадачивает то, что космическое пространство остается холодным. Итак, почему пространство такое холодное, если Солнце такое жаркое?

Чтобы понять это удивительное явление, важно сначала распознать разницу между двумя терминами, которые часто используются взаимозаменяемо: тепло и температура.

Роль тепла и температуры

Проще говоря, тепло — это энергия, хранящаяся внутри объекта, в то время как тепло или холодность этого объекта измеряется температурой. Таким образом, когда тепло передается объекту, его температура повышается. И происходит снижение значения температуры, когда тепло извлекается из объекта.

Эта передача тепла может происходить через три режима: проводимость, конвекция и излучение.

Теплопередача через проводимость происходит в твердых телах. Когда твердые частицы нагреваются, они начинают вибрировать и сталкиваться друг с другом, передавая тепло при этом от более горячих частиц к более холодным.

Теплопередача через конвекцию — явление, наблюдаемое в жидкостях и газах. Этот режим теплопередачи также происходит на поверхности между твердыми телами и жидкостями.

Когда жидкость нагревается, молекулы поднимаются вверх и переносят тепловую энергию вместе с ними. Комнатный обогреватель — лучший пример, демонстрирующий конвективный теплообмен.

Когда обогреватель нагревает окружающий воздух, температура воздуха будет повышаться, и воздух поднимется до верха комнаты. Присутствующий сверху холодный воздух вынужден двигаться вниз и нагреваться, создавая конвекционный ток.

Читайте также:  Заговор после захода солнца

Передача тепла посредством излучения — это процесс, при котором объект выделяет тепло в форме света. Все материалы излучают некоторое количество тепловой энергии в зависимости от их температуры.

При комнатной температуре все объекты, включая нас, людей, излучают тепло в виде инфракрасных волн. Из-за излучения тепловизионные камеры могут обнаруживать объекты даже ночью.

Чем горячее объект, тем больше он будет излучать. Солнце является отличным примером теплового излучения, которое переносит тепло через солнечную систему.

Теперь, когда вы знаете разницу между теплом и температурой, мы очень близки к тому, чтобы ответить на вопрос, поставленный в заголовке этой статьи.

Теперь мы знаем, что температура может влиять только на материю. Однако в космосе недостаточно частиц, и это почти полный вакуум и бесконечное пространство.

Это означает, что передача тепла неэффективна. Невозможно передать тепло посредством проводимости или конвекции.

Излучение остается единственной возможностью.

Когда солнечное тепло в форме излучения падает на объект, атомы, составляющие объект, начинают поглощать энергию. Эта энергия начинает двигаться атомы вибрировать и заставлять их производить в процессе тепло.

Однако с этим явлением происходит нечто интересное. Поскольку нет возможности проводить тепло, температура объектов в пространстве будет оставаться неизменной в течение длительного времени.

Горячие предметы остаются горячими, а холодные остаются холодными.

Но когда солнечные лучи попадают в земную атмосферу, появляется много материи для возбуждения. Следовательно, мы чувствуем излучение солнца как тепло.

Это естественно вызывает вопрос: Что произойдет, если мы поместим что-то вне атмосферы Земли?

Космическое пространство может с легкостью заморозить или сжечь вас

Когда объект находится за пределами земной атмосферы и при прямом солнечном свете, она будет нагрета до около 120°C. Объекты вокруг Земли, и в космическом пространстве, которые не получают прямых солнечных лучей находятся в пределах 10°C.

Температура 10°C обусловлена ​​нагревом некоторых молекул, покидающих земную атмосферу. Однако, если мы измерим температуру пустого пространства между небесными телами в космосе, это будет всего на 3 Кельвина выше абсолютного нуля.

Итак, главный вывод здесь заключается в том, что температуру Солнца можно почувствовать только в том случае, если есть материя, чтобы поглотить ее, в космосе почти нет материи, отсюда и холод.

Две стороны солнечного тепла

Мы знаем, что в затененных областях холодно. Лучшим примером является ночное время, когда температура снижается, так как в этой части Земли нет излучения.

Однако в космосе все немного по-другому. Да, объекты, которые скрыты от солнечного излучения, будут холоднее, чем пятна, которые получают солнечный свет, но разница довольно существенная.

Объект в космосе столкнется с двумя экстремальными температурами с двух сторон.

Давайте возьмем для примера Луну. Области, которые получают солнечный свет, нагреваются до 127°C, а темная сторона Луны будет при температуре замерзания -173°C.

Но почему земля не имеет таких же эффектов? Благодаря нашей атмосфере инфракрасные волны от солнца отражаются, и те, которые входят в атмосферу Земли, равномерно распределены.

Вот почему мы чувствуем постепенное изменение температуры, а не крайнюю жару или холод.

Другим примером, показывающим полярность температуры в космосе, является влияние солнца на солнечный зонд Parker. Солнечный зонд Parker — это программа НАСА, где зонд был отправлен в космос для изучения Солнца.

Солнечный зонд «Паркер»

В апреле 2019 года зонд находился всего в 15 миллионах миль от Солнца. Чтобы защитить себя, он использовал теплозащитный экран.

Температура теплового экрана, когда он был бомбардирован солнечным излучением, составляла 121°C, в то время как остальная часть зонда имела -150°C.

Космос — это лучший термос

Когда нагревать нечего, температура системы остается прежней. Это относится и к космосу. Солнечное излучение может проходить через него, но нет молекул или атомов, чтобы поглотить это тепло.

Даже когда скала нагревается выше 100°C излучением Солнца, пространство вокруг нее не будет поглощать никакой температуры по той же причине. Когда нет материи, передача температуры не происходит.

Следовательно, даже когда солнце излучает, пространство остается холодным как лед!

Источник

Adblock
detector