Как Вселенная создает золото
Иллюстрация горячего, плотного, расширяющегося облака обломков, от нейтронных звезд незадолго до того, как они столкнулись. Изображение NASA Центра космических полетов Goddard / CI Lab.
Наконец, ученые поняли, как Вселенная производит золото. Они увидели, как оно создается в космическом огне двух сталкивающихся звезд через гравитационную волну, которую они излучали.
В течение тысяч лет люди искали способ превратить вещество в золото. Древние алхимики считали этот драгоценный металл наивысшей формой материи. По мере развития человеческого знания мистические аспекты алхимии уступили место наукам, которые мы знаем сегодня. И все же, несмотря на все наши достижения в области науки и техники, история происхождения золота оставалась неизвестной. До сих пор.
Наконец, ученые знают, как Вселенная производит золото. Используя наши самые современные телескопы и детекторы, мы смогли обнаружить, что оно создается в космическом огне двух сталкивающихся звезд, впервые обнаруженных LIGO через гравитационную волну, излучаемую обсерваторией.
Происхождение элементов.
Ученым удалось собрать кусочки, из которых вытекают многие элементы периодической таблицы. Большой взрыв создал водород, самый легкий и самый распространенный элемент. Когда звезды сияют, они перерабатывают водород в более тяжелые элементы, такие как углерод и кислород, элементы жизни. В свои последние годы звезды создают общие металлы — алюминий и железо — и выбрасывают их в космос при различных типах взрывов сверхновых.
На протяжении десятилетий ученые предполагали, что эти звездные взрывы также объясняют происхождение самых тяжелых и самых редких элементов, таких как золото. Это зависит от объекта, оставленного после смерти массивной звезды: нейтронной звезды. Нейтронные звезды в полтора раза превосходят массу солнца, однако, их диаметр около 15 километров. Чайная ложка материала с их поверхности весит 10 миллионов тонн.
Многие звезды во Вселенной находятся в двоичных системах — две звезды, связанные гравитацией и вращающиеся вокруг друг друга. Пара массивных звезд может в конечном итоге стать парой нейтронных звезд. Нейтронные звезды вращаются вокруг друг друга в течение сотен миллионов лет. Но Эйнштейн говорил, что их танец не может длиться вечно. В конце концов, они должны столкнуться.
Обнаруженное массивное столкновение.
Утром 17 августа 2017 года пульсация в космосе прошла через нашу планету. Она был обнаружена детекторами гравитационных волн LIGO и Virgo. Это космическое возмущение исходило от пары нейтронных звезд, сталкивающихся со скоростью в одну треть скорости света. Энергия этого столкновения была невообразима.
Услышав о столкновении, астрономы по всему миру, принялись за работу. Телескопы большие и мелкие сканировали участок неба, откуда пришли гравитационные волны. Двенадцать часов спустя три телескопа увидели новую звезду, названную «килоновой», в галактике NGC 4993, примерно в 130 миллионов световых лет от Земли.
Астрономы захватили свет от космического огня столкнувшихся нейтронных звезд. Пришло время направить самые большие и лучшие в мире телескопы на новую звезду, чтобы увидеть видимый и инфракрасный свет от последствий столкновения. В Чили телескоп Gemini повернул свое большое 26-футовое зеркало к килоновой. NASA направило Хаббл туда же.
Подобно тому, как угли интенсивного костра становятся холодными и тусклыми, послесвечение этого космического огня быстро исчезло. Через несколько дней видимый свет исчез, оставив теплый инфракрасный свет, который также исчез.
Наблюдение за мирозданием ковки золота. Но в этом затухающем свете был закодирован ответ на давний вопрос о том, как производится золото. Просветите солнечный свет через призму, и вы увидите спектр нашего солнца — цвета радуги распространяются от коротковолнового синего света до длинноволнового красного света. Этот спектр содержит отпечатки элементов, связанных и созданных на Солнце. Каждый элемент отмечен уникальным отпечатком линий в спектре, отражающим разную атомную структуру. Спектр килоновы содержал отпечатки самых тяжелых элементов во Вселенной. Его свет несет контрольную сигнатуру материала нейтронной звезды, распадающегося на платину, золото и другие, так называемые элементы «r-процесса».
Впервые люди увидели алхимию в действии, Вселенная превратила вещество в золото. И не просто небольшое количество: это одно столкновение создало по меньшей мере 10 золотых Земель. Возможно на вас сейчас золотые или платиновые украшения. Взгляните на них. Этот металл был создан в атомном огне столкновения нейтронных звезд в нашей собственной галактике миллиарды лет назад — столкновение, подобное тому, которое наблюдали 17 августа.
Что станет с золотом, произведенном в этом столкновении? Оно будет выброшено в космос, и смешается с пылью и газом из своей галактики-хозяина. Возможно, однажды оно станет частью новой планеты, жители которой приступят к тысячелетнему поиску, чтобы понять его происхождение.
Источник
Рождение золота
Пять причин, из-за которых открытие гравитационных волн от нейтронных звезд так важно для науки
В понедельник, 16 октября, гравитационно-волновая обсерватория LIGO и целый ряд других крупных международных научных групп сообщили о чрезвычайно важном для современной астрономии открытии. Более 70 обсерваторий, работающих во всех диапазонах электромагнитного спектра, а также все три действующие гравитационно-волновые обсерватории впервые зафиксировали во всех подробностях слияние двух нейтронных звезд. В этом материале мы расскажем, что же именно наблюдали астрономы и на какие вопросы о нашей Вселенной помогает ответить новое исследование.
Как все произошло?
17 августа 2017 года, в 15:41:04 по московскому времени детектор обсерватории LIGO в Хенфорде (Вашингтон) услышал рекордно длинную гравитационную волну — сигнал продолжался около ста секунд. Это очень большой промежуток времени — для сравнения, предыдущие четыре фиксации гравитационных волн длились не дольше трех секунд. Сработала автоматическая программа оповещения. Астрономы проверили данные: оказалось, что второй детектор LIGO (в Луизиане) тоже зафиксировал волну, но автоматический триггер не сработал из-за краткосрочных шумов.
На 1,7 секунды позже детектора в Хенфорде, независимо от него, сработала автоматическая система телескопов «Ферми» и «Интеграл» — космических гамма-обсерваторий, наблюдающих одни из самых высокоэнергетических событий во Вселенной. Приборы обнаружили яркую вспышку и примерно определили ее координаты. В отличие от гравитационного сигнала, вспышка длилась всего две секунды. Интересно, что российско-европейский «Интеграл» заметил гамма-всплеск «боковым зрением» — «защитными кристаллами» основного детектора. Тем не менее, это не помешало триангуляции сигнала.
Примерно через час LIGO разослал сведения о возможных координатах источника гравитационных волн в обсерватории по всему миру — установить эту область удалось благодаря тому, что сигнал не был зарегистрирован европейским гравитационным детектором Virgo. По задержкам, с которыми детекторы начали получать сигнал, стало ясно, что, вероятнее всего, источник находится в южном полушарии. Изначальная область, рекомендуемая для поиска, достигала 28 квадратных градусов, что эквивалентно сотням площадей Луны.
Следующим этапом было объединение данных гамма- и гравитационных обсерваторий воедино и поиск точного источника излучения. Так как ни гамма-телескопы, ни тем более гравитационные не позволяли найти требуемую точку с большой точностью, физики инициировали сразу несколько оптических поисков. Один из них — с помощью роботизированной системы телескопов «МАСТЕР», разработанной в ГАИШ МГУ.
Обнаружить среди тысяч возможных кандидатов нужную вспышку удалось чилийскому метровому телескопу Swope — почти через 11 часов после гравитационных волн. Астрономы зафиксировали новую светящуюся точку в галактике NGC 4993 в созвездии Гидры, ее яркость не превышала 17 звездной величины. Такой объект вполне доступен для наблюдения в полупрофессиональные телескопы.
В течение примерно часа после этого, независимо от Swope, источник нашли еще четыре обсерватории, в том числе аргентинский телескоп сети «МАСТЕР». После этого началась масштабная наблюдательная кампания, к которой присоединились телескопы Южной европейской обсерватории, «Хаббл», «Чандра», массив радиотелескопов VLA и множество других приборов — в сумме более 70 групп ученых наблюдали за развитием событий. Через девять дней астрономам удалось получить изображение в рентгеновском диапазоне, а через 16 дней — в радиочастотном. К сожалению, через некоторое время Солнце приблизилось к галактике и в сентябре наблюдения стали невозможными.
Что стало причиной взрыва?
Такая характерная картина взрыва во многих электромагнитных диапазонах была предсказана и описана уже давно. Она соответствует столкновению двух нейтронных звезд — ультракомпактных объектов, состоящих из нейтронной материи.
По словам ученых, масса нейтронных звезд составляла 1,1 и 1,6 массы Солнца (сравнительно точно определена суммарная масса — около 2,7 массы Солнца). Первые гравитационные волны возникли, когда расстояние между объектами составляло 300 километров.
Большой неожиданностью стало небольшое расстояние от этой системы до Земли — около 130 миллионов световых лет. Для сравнения, это всего в 50 раз дальше, чем от Земли до Туманности Андромеды, и почти на порядок меньше, чем расстояние от нашей планеты до черных дыр, столкновение которых фиксировали ранее LIGO и Virgo. Кроме того, столкновение стало самым близким к Земле источником короткого гамма-всплеска.
Что такое нейтронные звезды
Нейтронные звезды образуются при коллапсе гигантов и сверхгигантов с массами в 10–25 масс Солнца. Их рождение начинается так: на каком-то этапе масса ядра звезды превышает предел Чандрасекара — 1,4 солнечной массы. В этот момент нарушается равновесие между гравитацией ядра, притягивающей внешнюю оболочку звезды, и давлением электронов, препятствующим сжатию. Звезда начинает сжиматься — коллапсировать. Плотность и температура вещества в ядре резко увеличиваются, начинается захват электронов протонами и образование нейтронов (с выбросом нейтрино). Через некоторое время ядро уже практически полностью состоит из нейтронов.
Выбросы энергии от протон-электронных слияний разрывают оболочку звезды и уносят ее материал — происходит взрыв сверхновой. Все, что остается в результате — плотное нейтронное ядро с тонкой оболочкой. Плотность нейтронной звезды огромна — она определяется лишь давлением вырожденных нейтронов и достигает 4–6×10 17 килограмм на кубический метр. Одна капля нейтронной материи (0,030 миллилитра) весит больше десяти миллионов тонн — как сотни полностью загруженных товарных поездов. При этом характерные размеры нейтронных звезд невелики — около 10 километров в диаметре, такую звезду можно поместить внутрь Третьего транспортного кольца Москвы.
Кроме огромной плотности, нейтронные звезды обладают мощными магнитными полями, с индукцией от тысяч до триллионов тесла. Для сравнения, магнитное поле Земли не превышает 0,065 тесла. Часть нейтронных звезд приобретают в результате взрыва большой угловой момент — так возникают пульсары.
На сегодняшний день нет единой картины того, как устроена нейтронная материя, не построено уравнение ее состояния. «Нейтронию» приписываются такие свойства, как сверхпроводимость и сверхтекучесть.
Двойные нейтронные звезды известны с 1974 года — одну из таких систем открыли нобелевские лауреаты Рассел Халс и Джозеф Тейлор. Однако до сих пор все известные двойные нейтронные звезды находились в нашей Галактике, а стабильность их орбит была достаточной, чтобы они не столкнулись в течение ближайших миллионов лет. Новая пара звезд сблизилась настолько, что началось взаимодействие и стал развиваться процесс переноса вещества
Событие получило название килоновой. Дословно это означает, что яркость вспышки была примерно в тысячу раз мощнее, чем типичные вспышки новых звезд — двойных систем, в которых компактный компаньон перетягивает на себя материю.
Источник
Откуда все золото мира? Из космоса!
Возможно, мы любим золото еще и потому, что атомы нашего тела и золото возникли вместе в термоядерном пламени звезд
Фото: Khaled al-Hariri / Reuters
Золото – дитя столкновений звезд. Подтверждение этой гипотезы нашли ученые из Гарвард-Смитсоновского центра астрофизики в Кембридже под руководством Эдо Бергера, когда проанализировали результаты зафиксированного гамма-всплеска на расстоянии около 4 миллиардов световых лет от Земли. Гамма-всплеск был связан со столкновением двух нейтронных звезд и последовавшим взрывом. Именно этот супервзрыв породил золото массой в несколько наших Лун, а также другие тяжелые металлы.
Называть стоимость этого золота в наших денежных единицах бессмысленно – 10 октальонов долларов просто невозможно представить. Но становится понятно – где находится место, которое насыщает нашу Вселенную золотом.
Как рождаются элементы
Сейчас науке доподлинно известно, как проистекает большинство термоядерных реакций в недрах звезд. Самая простая реакция – это слияние ядер водорода в ядро гелия. Когда начнет «гореть» гелий, то может появиться углерод, а когда и он «загорится» в термоядерном пламени, то будут образовываться ядра магния, натрия, кислорода, алюминия, кремния. Когда «загорится» кремний, можно будет сказать, что топливо для термоядерного «костра» заканчивается, – так как превращение кремния в серу и аргон – последние реакции, которые выделяют тепло. Последующая цепочка перерождений элементов уже его поглощает – и связано это уже с появлением железа.
Спектральные линии основных элементов Солнца. Спектр, огрубленный в целях наглядности, – в реальности линий много больше, и одна из них относится к золоту
В жизни многих звезд наступает момент (наступит он и у Солнца), когда водород в их центральной части заканчивается. Звезда начинает распухать и превращается в красного гиганта. И вот во внешних оболочках таких звезд легкие элементы начинают захватывать нейтроны, идущие из недр звезды, и образовывать ядра все более тяжелых элементов. Эти элементы выносятся со звездным ветром в окружающую среду .
Но, к сожалению, астрофизики не могли до сих пор объяснить, откуда все же берется золото во Вселенной в существующих количествах, хотя и понимали, какие условия нужны для его «производства». Мало того: более 70 лет назад физики уже попытались его сделать, по сути, моделируя звездный процесс в лабораторных условиях.
Алхимики XX века
Золото нейтронных звезд
Нейтронные звезды – уникальные объекты, которые образуются в финальной стадии существования массивных звезд. Описать их крайне трудно – это шары из нейтронов, окруженные корой ядер тяжелых элементов. Плотность нейтронного вещества невообразимая – что-то около 280 миллионов тонн в кубическом сантиметре! Вся масса Солнца умещается в шаре диаметром 15–20 километров. Урони наперсток такого вещества на землю – и он проколет ее до ядра.
Именно столкновение таких монстров создавало идеальные условия для образования тяжелых металлов, в частности золота. Эту идею предложил еще в 1970-х годах Джеймс Латтимер, в то время, когда научное сообщество полагало, что тяжелые элементы образуются во время коллапса массивных звезд. Однако у Латтимера в то время не было технических возможностей подтвердить свою точку зрения. Да и сейчас он с осторожностью относится к интерпретациям Бергера, полагая, что нужны новые, дополнительные научные миссии и наблюдения, которые и должны подтвердить его теорию, хотя это скорее традиционная скептическая позиция настоящего ученого, опасающегося случайных совпадений и ищущего доказательств.
Так художники изображают столкновение нейтронных звезд
Если же гипотеза Латтимера верна, то становится понятным и появление золота на нашей планете. Аномально высокое содержание тяжелых металлов в Солнечной системе наводит на мысль, что сама она образовалась из газопылевой туманности, оставшейся после взрыва сверхновой звезды, одной или даже нескольких, или какого-либо подобного катаклизма. Вот эти тяжелые элементы и создали пояс каменных планет от Меркурия до Марса, астероиды и метеориты. Здесь мы уходим из сферы астрофизики и переходим в зону ответственности планетологии.
Золотой дождь
Ответ на этот вопрос нашли специалисты Бристольского университета под руководством Маттиаса Виллболда. Сначала они нашли самую древнюю земную кору на планете в Гренландии, где находится геологическая формация Исуа. Этой формации, по мнению ученых, около 3,8 миллиарда лет, это фрагмент древнейшей земной коры, образовавшейся на остывающей планете. Здесь были взяты образцы для определения содержания в них тяжелых элементов.
Таким образом, мы обязаны своими золотыми запасами настоящему потоку ценных элементов, которые оказались на поверхности планеты благодаря массированной астероидной «бомбардировке». Потом в ходе развития Земли в течение последних миллиардов лет золото вступило в круговорот пород, появляясь на ее поверхности и вновь скрываясь в глубинах верхней мантии. Но теперь ему путь к ядру закрыт, и большое количество этого золота просто обречено оказаться в наших руках.
Но я хочу обратить ваше внимание на другой факт. Мы все состоим из углерода, кислорода, железа и других сложных элементов, которые образовались в недрах горящих и взрывающихся звезд. И золото – наш брат по звезде-матери. Может, поэтому мы его так любим?
Источник