Меню

Как сделано солнце настоящее

Искусственное Солнце: плюсы и минусы проектов

Наступила осень, и скоро нас всех ждут короткие дни и длинные темные ночи. А в некоторых регионах планеты бывают и полярные ночи, когда Солнце утром вовсе не появляется из-за горизонта или восходит лишь на короткое время, иногда менее получаса. К сожалению, уличные фонари никогда не заменят солнечного света. Но можно ли найти другое решение? Могут ли современные технологии обеспечить нам искусственное Солнце?

Звучит, конечно, грандиозно, но на самом деле кое-что мы уже способны сделать. Речь идет о космических зеркалах, которые могли бы отражать солнечный свет и освещать определенные регионы Земли в темное время суток. Подобные космические «солнечные зайчики» пригодятся не только для освещения городов, автострад и других повседневных нужд, но и, например, для экстренного освещения зоны стихийных бедствий или боевых действий.

Светлое «знамя» над миром

Первые опыты в области разработки «космического прожектора» осуществила Россия. Это закономерно, учитывая огромные пространства и большое количество северных городов. Проект «Знамя» был многообещающим и начался вполне успешно.


Космический корабль «Прогресс» стал первым управляемым космическим зеркалом, которое осветило Землю

Российские ученые планировали вывести на орбиту 20-метровое зеркало, которое должно было осветить Землю ночью. Поскольку монолитное металлическое зеркало такого диаметра на орбиту вывести невозможно, было решено использовать зеркало из тонкой светоотражающей пленки. Разворачивание столь большого полотнища из тончайшего непрочного материала само по себе является сложнейшей инженерной задачей. В итоге была выбрана довольно «мудреная» конструкция: на борту грузового космического корабля «Прогресс М-15» устанавливалось восемь катушек с полосами светоотражающей полиэтилентерефталатной пленки толщиной всего 5 мкм. Данная пленка сегодня широко используется практически повсеместно: от упаковки продуктов до создания металлизированных солнечных парусов.

На орбите космический корабль должен был начать вращаться, а катушки постепенно разматывать пленку. Под действием центробежной силы зеркало разворачивалось, а специальное гибкое кольцо обеспечивало круглую форму зеркала.


Проект «Знамя» доказал эффективность космического зеркала в деле освещения больших участков земной поверхности

4 февраля 1993 года эксперимент «Знамя-2» был успешно осуществлен. Двадцатиметровое зеркало из тончайшей алюминизированной пленки развернулось в штатном режиме и осветило Землю. Поскольку «Прогресс М-15» мчался по орбите с огромной скоростью, «солнечный зайчик» диаметром около 5 км проносился по поверхности Земли так же быстро – со скоростью 8 км/с. Поэтому «волшебного восхода» посреди ночи жители Европы не наблюдали – лишь яркую вспышку в небе. Пятно света от «Знамени-2» пробежало от Франции до Беларуси, где его застал восход Солнца. Несмотря на то, что над Европой была сплошная облачность, многие люди видели вспышку света. Немецкие метеорологи даже зафиксировали освещенность от светового пятна «Знамени-2», она составила приблизительно 1 люкс (1 люмен на квадратный метр). Для сравнения, яркость 60-Вт лампочки накаливания составляет 700-800 люмен. На первый взгляд, космическое зеркало светило совсем тускло, но следует помнить, что оно имело не такую уж и большую площадь отражающей поверхности, да, к тому же, освещало не комнату в 10 кв. м, а круг диаметром 5000 м. В целом ученые сравнили свет от «Знамени-2» со светом полной Луны, что для 20-м зеркала очень неплохо.

Эксперимент «Знамя-2» привлек внимание мировой общественности и доказал возможность освещения Земли с помощью космического зеркала. Поэтому российские ученые подготовили следующий эксперимент этой серии – «Знамя-2,5». Это был переходный этап перед созданием «полнофункционального» 200-м зеркала, которое могло бы освещать на порядок большие регионы.

В «Знамени-2,5» использовались те же технологии, что и в первом эксперименте, только зеркало было на 5 м больше – диаметром 25 м. Оно должно было дать световое пятно размером около 8 км. 4 февраля 1999 года зеркало, установленное на борту транспортного космического корабля «Прогресс М40», начало разворачиваться, но зацепилось за антенну и запуталось в ней. Эксперимент не удался, и корабль затопили в океане.

Третий проект, «Знамя-3» так и не состоялся.

Будущее космических зеркал

В июне 2012 года в Италии прошла 25-я международная конференция ECOS 2012, посвященная перспективным путям развития экологически чистой энергетики. На этом мероприятии также обсуждались и преимущества космических зеркал, освещающих Землю.

Дело в том, что наша планета получает от Солнца 2×1014 КВт энергии, а на расстоянии геостационарной орбиты (35 786 км) – в 45 раз больше. Вынос коллекторов, собирающих энергию Солнца, в космос решает многие проблемы. Прежде всего, это экономит полезное пространство, поскольку огромные поля солнечных панелей на Земле будут занимать слишком много места, потребуют мощных опорных конструкций, силовых приводов для слежения за Солнцем и т.д. Но, к сожалению, КПД современных солнечных панелей очень низок, и они за свой срок службы в космосе попросту не окупятся. Другое дело зеркало: относительно дешевая и простая конструкция без сложной электроники может направлять дополнительный солнечный свет на небольшие наземные коллекторы, а также освещать города и сельскохозяйственные угодья.

Плотность солнечной энергии в обычный погожий летний день на нашей планете в среднем равна 1,36 КВт/м 2 . Таким образом, заменить солнечный свет солнечным же «зайчиком», в общем-то, не так уж и сложно. Создание больших зеркал размером с небольшую страну до недавнего времени было фантастикой. Однако с появлением современных компьютерных технологий создание массива отдельных автономных аппаратов, работающих в единой сети, является технологически решаемой задачей.

Читайте также:  Шторка для лобового стекла автомобиля от солнца раздвижная


По этой формуле каждый может рассчитать диаметр зеркала и высоту орбиты, необходимые для освещения его родного населенного пункта

Ключевым вопросом остается лишь вывод большой массы грузов на орбиту. Стоимость вывода тонкопленочного зеркала сегодня составляет несколько тысяч долларов за килограмм. Если брать далеко не самое современное зеркало проекта «Знамя» с плотностью 22 г/см 2, то получается весьма «грустная» сумма, которая большинству стран не по карману. Но современные технологии позволяют создать зеркала с вдвое меньшей массой. К тому же, в настоящее время разрабатываются проекты тяжелых ракет-носителей, вроде американской SLS, способной выводить на низкую околоземную орбиту 140 тонн груза.

По расчетам специалистов НАСА, вывод зеркала диаметром 1 км стоит 80,3 млн долл. или 102,3 долл. за 1 кв.м*. Для реализации масштабных проектов требуется радикальное снижение стоимости вывода грузов на орбиту: приблизительно до 200 долл. за килограмм груза.

Есть и другой нюанс. Дело в том, что чем выше орбита, тем больше по размеру солнечный «зайчик» и меньше энергии направляется на квадратный метр поверхности. Например, при орбите высотой 800 км для передачи солнечного света с плотностью энергии 1 КВт на 1 м 2 земной поверхности и непрерывного освещения выбранного участка Земли достаточно лишь нескольких десятков зеркал площадью 1 кв. км (для сравнения, площадь основания пирамиды Хеопса равна 0.05 кв. км, т.е. в 50 раз меньше). На геостационарной орбите высотой 35,8 тыс. км для достижения того же уровня освещенности придется сооружать зеркало площадью 150 тыс. кв. км – это меньше площади Беларуси (207 тыс. кв. км) и составляет примерно половину площади Польши. Это, безусловно, гигантское зеркало, но оно смогло бы непрерывно освещать огромный регион: в круге диаметром 3329 км — это территория от Смоленска до Новосибирска и от северной морской границы России до китайской границы с Киргизией, попутно свет накрыл бы весь Кавказ и Казахстан. При этом данная территория за год получала бы дополнительных 41200 ЭДж энергии, при нынешнем общепланетном потреблении в 500 ЭДж.


Современные технологии позволяют разворачивать в космосе намного более легкие и крупные зеркала, чем 20-м «Знамя»

Правда, создание такого зеркала является делом очень неблизкого будущего, поскольку при современных ракетных технологиях вывести на орбиту такой комплекс можно будет минимум за несколько сотен лет, да и то усилиями всей планеты. Также довольно трудно спрогнозировать, насколько радикально изменит климат и функционирование биосистем такое зеркало, создающее «вечный летний день». А ведь цикл дня и ночи очень важен для всего живого, к тому же дополнительная тепловая энергия создаст совершенно новый климатический фактор.

Человечеству уже по силам собрать в космосе зеркало, которое будет светить в десятки раз ярче, чем полная Луна. Выгода налицо: для освещения используется «бесплатная» энергия Солнца; осветить можно сразу крупный регион или город; в несколько раз повысить отдачу энергии наземных солнечных электростанций; космическая система освещения не боится никаких земных катаклизмов вроде землетрясений и ураганов. Также подобное зеркало могло бы продлить вегетационный период полезных растений.

Сложности реализации крупных проектов космических зеркал по-прежнему заключаются лишь в несовершенстве технологий вывода грузов в космос. На геостационарной орбите (оптимальной для зеркала) нужно сооружать космическое зеркало огромной площади. В свою очередь, на более низких круговых орбитах для непрерывного освещения участка Земли придется использовать множество отдельных зеркал, что также отнюдь не удешевляет проект и к тому же упирается в проблему космического мусора. Но, так или иначе, у человечества есть интересная возможность повысить комфортность своего обитания не в рамках отдельно взятого помещения, а крупного города или целого региона. В ближайшем будущем, возможно, появятся новые технологии доставки грузов в космос, будут созданы технологии изготовления космических зеркал с помощью, например, наночастиц на основе метаматериалов. И тогда, наконец, человечество сможет реализовать давнюю мечту и создать свое искусственное Солнце в ночном небе.

Источник

Солнце: строение, характеристики, интересные факты, фото, видео

Земная жизнь обязана своим происхождению небесному светилу. Оно греет и освещает всё находящееся на поверхности нашей планеты. Недаром поклонение Солнцу и представление его в качестве великого небесного бога нашло отражение в культах первобытных народов, населявших Землю.

Прошли века, тысячелетия, но важность его в жизни человека только возросла. Все мы – дети Солнца.

Что собой представляет Солнце?

Звезда из Галактики Млечный Путь, своей геометрической формой, представляющая огромный, раскалённый, газообразный шар, постоянно излучающий потоки энергии. Единственный источник света и тепла в нашей звёздно-планетарной системе. Сейчас Солнце пребывает в возрасте жёлтого карлика, согласно общепринятой классификации типов светил вселенной.

Сравнение Солнца и планет

Характеристики Солнца

Солнце обладает следующими параметрами:

  • Возраст –4,57 миллиарда лет;
  • Расстояние до Земли: 149 600 000 км
  • Масса: 332 982 масс Земли (1,9891·10³⁰ кг);
  • Средняя плотность – 1,41 г/см³ (она увеличивается в 100 раз от периферии к центру);
  • Орбитальная скорость Солнца равна 217 км/с;
  • Скорость вращения: 1,997 км/с
  • Радиус: 695-696 тыс. км;
  • Температура: от 5 778 К на поверхности до 15 700 000 К в ядре;
  • Температура короны:

1 500 000 К;

  • Солнце стабильно в своей яркости, оно находится в 15% самых ярких звёзд нашей Галактики. Излучает меньше ультрафиолетовых лучей, но обладает большей массой по сравнению с аналогичными звёздами.
  • Из чего состоит Солнце?

    По своему химическому составу наше светило ничем не отличается от других звёзд и содержит: 74,5% – водорода (от массы), 24,6% – гелия, менее 1% – иных веществ (азот, кислород, углерод, никель, железо, кремний, хром, магний и другие вещества). Внутри ядра идут беспрерывные ядерные реакции превращающие водород в гелий. Абсолютное большинство массы Солнечной системы – 99,87% принадлежит Солнцу.

    Состав Солнца

    Строение Солнца

    В самом центре тела нашей звезды расположено ядро. Оно занимает четверть радиуса Солнца. Именно тут «бушуют» термоядерные реакции, порождая видимое нам излучение. Вследствие огромных размеров, плотность вещества внутри светила огромна – в 150 раз больше плотности воды.

    Далее находится зона лучистого переноса, по которой хаотично движутся фотоны. Удивительно, что в среднем достигают они следующего слоя за 170 тысяч лет.

    Конвективная зона – внешняя область Солнца, где движение плазмы происходит за счёт явления конвекции (тёплое устремляется наверх и остывает, холодное идёт вниз для нагревания). Между этими двумя областями располагается тонкий слой под названием «тахоклин» – область возникновения магнитного поля.

    Солнечная атмосфера трёхслойная: хромосфера, переходная часть, корона. Видимая глазу поверхность глубиной несколько сотен километров, носит название – фотосфера.

    Поверхность

    Температура фотосферы колеблется в пределах: от 8000 К на глубине 300 км до 4000 К в самых верхних слоях. Скорость вращения составляющего её газа неравномерна. 24 дня в области экватора и 30 на полюсах. Красный цвет хромосферы можно различить только во время полного солнечного затмения.

    Солнечные пятна, факелы и гранулы

    Солнечная поверхность по уровню свечения неоднородна и имеет менее яркие области, называемые солнечными пятнами. Продолжительность существования, которых варьируется от нескольких дней до нескольких недель. Необходимо отметить, что есть пятна, превышающие диаметр Земли.

    Солнечные пятна

    Кроме того, на поверхности Солнца расположены:

    • Факелы – участки повышенной яркости, – «родные братья» солнечных пятен, часто предшествующие или последующие их возникновению;
    • Гранулы, размером примерно в тысячу километров, покрывающие собой всю фотосферу и различимые обычным глазом;
    • Супергранулы, габаритами в 35 000 км, тоже целиком обволакивающие всю поверхность светила. Но проявляют они себя лишь с помощью физических эффектов.

    Внутри Солнца

    Согласно, гипотезы Ханса Бете, внутри Солнца постоянно происходят реакции превращения водорода в гелий с большим выделением тепловой энергии. Своего рода – действующая 5 млрд. лет, водородная бомба. С запасом ещё на такой же срок.

    Три года назад учёные Даремского университета из Великобритании выдвинули гипотезу поглощения вещества тёмной материи нашим светилом. Якобы она служит переносчиком энергии внутри Солнца. Ответ на вопрос можно будет получить, проведя исследования на базе самого большого ускорителя – адронного коллайдера. Для этого необходимо иметь хотя бы частицу тёмной материи.

    Солнечный ветер

    Это направленное от Солнца движение ионизированных частиц в сторону выхода за пределы нашей системы. Причиной возникновения столь интересного явления служит разность сил гравитации и давления верхних слоёв солнечной короны, не способная удержать поток ядерной плазмы в пределах нашей звезды (существует звёздный ветер других небесных светил). Скорость его может доходить до 1200 км/сек, а потоки пронизывать всё космическое пространство.

    Первооткрывателем данного явления стал американский астрофизик Юджин Паркер. Но задолго до него ряд учёных делал предположения об излучение заряженных частиц с поверхности светила. В частности, Людвиг Бирманн из Германии сделал очень любопытное наблюдение хвостов комет. Оказывается, они всегда направлены в сторону от Солнца. Значит, испытывают на себе какое-то физическое воздействие.

    Распространение солнечного ветра в космосе

    С началом космической эры, гипотеза Паркера нашла своё подтверждение. Были проведены замеры потоков солнечного ветра со станций: «Луна-1», «Маринер-2». Даже был организован 4-х спутниковый эксперимент по замеру силы ударной волны (столкновение солнечного ветра с магнитосферой планеты). В процессе удалось получить уникальные научные данные с высокой точностью измерений.

    Почему светит Солнце?

    Немало философов и учёных пытались ответить на этот, вроде бы простой вопрос. Древнегреческий астроном Анаксагор за свою теорию раскалённого металлического шара умудрился попасть в тюрьму. Ясность наступила с началом XX-го века и открытием явления радиоактивности, а затем возможности проведения управляемой ядерной и термоядерной реакции.

    Именно эти открытия приподняли завесу тайны происхождения самого распространённого явления природы. Английские учёные Эрнест Резерфорд и Артур Эддингтон первыми высказали предположение о протекании реакций термоядерного синтеза в глубинах нашего светила.
    Благодаря этому, водород Солнца постепенно превращается в гелий, выпуская потоки фотонов, которые мы наблюдаем в качестве света.

    Солнечное затмение

    Такое событие, как затмение Солнца, всегда вызывало гамму чувств у невежественных людей, сопровождающихся ужасом и паникой. Находились и желающие «погреть на этом руки» и заработать авторитет предсказателей и ясновидцев. Но не только существа мыслящие, но и животные реагируют на появление темноты. Впрочем, в большинстве своём, воспринимая её как наступление ночи.

    Научное объяснение явлению простое: Луна закрывает Солнце. Происходит это только во время новолуния (примерное нахождение всех трёх небесных объектов на одной линии, да и то не всегда). Виды солнечных затмений с позиции земного наблюдателя:

    • «Частное» – спутник закрывает светило частично.
    • «Полное» – солнечный диск закрыт полностью.
    • «Кольцеобразное» – конус отбрасываемой тени не достигает земной поверхности.
    • «Полное кольцеобразное» или «гибридное» – два наблюдателя в разных точках одновременно видят один из видов солнечных затмений.

    Солнечное затмение

    Наблюдение данного явления позволило совершить ряд важных открытий и рассмотреть корону и атмосферу Солнца. Что в обычных условиях, крайне затруднено. Кстати, само зрелище не балует землян частотой своего появления. Регулярность появления события составляет: 237-мь раз за век.

    Как возникло Солнце?

    Есть разные теории происхождения Солнца. Наиболее популярная из них утверждает, что светило сформировалось из газопылевого облака, возникшего в результате сверхновой звезды. В качестве доказательства приводится аргумент наличия большого количества урана и золото в центральном теле нашей звёздной системы.

    Другая гипотеза прослеживает длинную цепочку превращений: комета с периферии Галактики -> ледяная планета -> планета-гигант -> инфракрасный карлик -> жёлтый карлик. Накапливая массу, Солнце под воздействием сил гравитации довело плотность ядра до запуска термоядерных реакций, и возможности удержания атмосферы. Причём притяжение огромного шара позволило не отпускать от себя даже лёгкие газы: водород и гелий. Правда с поверхности светила, они всё равно улетучиваются в космическое пространство.

    Образование Солнечной системы

    Существует несколько звёзд – аналогов Солнцу в созвездиях: Близнецов, Скорпиона, Гончих Псов, Корма, Дракона. Их светимость, температура, масса, плотность и примерный возраст совпадают с нашим светилом.

    Жизненный цикл Солнца

    По всей видимости, Солнце своим появлением обязано протозвёздам предыдущих поколений, так как в его составе содержится значительное количество металлов. Возраст его составляет 4,5 -4,75 млрд. лет, причём всё это время оно увеличивает свою яркость и температуру (разгорается).

    Жизненный цикл звезд

    Такой физический процесс не может идти без потери массы водорода, являющегося основным элементом в составе светила. Когда-нибудь это закончится, водород сгорит и улетучиться, а гелий начнёт сжиматься. Размеры светила станут увеличиваться вплоть до достижения пределов орбиты Земли. Солнце станет красным гигантом и будет находиться в таком состоянии предположительно 120 млн. лет. Затем возникнет туманность вследствие значительного уменьшения массы и гигантского расширения наружного слоя. Из красного гиганта оно превратится в белого карлика, который почернеет через несколько триллионов лет.

    Расположение Солнца в галактике

    Нам крупно повезло, так как Солнечная система расположена в обитаемой зоне галактики Млечный Путь, что способствует возникновению жизни по целому ряду причин. В нашей галактике имеются 4-е главные спиральные рукава. Вот на краю одного из них – рукаве Ориона и пребывает в настоящее время Солнце.

    Движение Солнечной системы в нашей галактике

    Это окраина, и расстояние от неё до центра составляет около 8-и тысяч парсеков (1 парсек = 3,2 световых года). Поэтому последние 4,5 млрд. лет мы живём достаточно спокойно, не подвергаясь галактическим катаклизмам.

    Такими данными наука стала располагать благодаря исследованиям двух астрономов: Уильяма Гершеля и Харлоу Шепли. Последний смог создать детальную карту нашей галактики. Оказывается, Солнечная система вращается вокруг галактического центра, со скоростью более 200 км/сек. И успела за время своего существования обернуться вокруг него 30 раз.

    Солнце и Земля

    Влияние светила на нашу планету бесконечно огромно. И это не преувеличение. Земля вращается вокруг Солнца, как бы подставляя ему свои «бока», что обуславливает изменения времён года и переход день-ночь.

    Вращение Земли вокруг Солнца

    Мало того, за счёт излучаемого тепла и света возникла и продолжает существовать жизнь во всём многообразии. Ежегодно и «совершенно бесплатно» каждый квадратный километр поверхности Земли получает 342 Вт энергии. Стоит только посмотреть тариф, умножить эту цифру на количество часов в году, как сразу становится ясно, насколько мы богаты.

    Но это лишь малая доля безмерных богатств нашей планеты, щедро одариваемой Солнцем. Именно под воздействием его лучей идёт беспрерывный рост растений, насыщение атмосферы столь необходимым для дыхания кислородом, бесконечная дезинфекция окружающей среды, и оздоровление человеческого организма.

    Мы научились вырабатывать электроэнергию, используя ресурсы планеты, созданные опять же благодаря Солнцу. И можно быть абсолютно уверенными в том, что пользуясь его благами в ближайшие несколько миллиардов лет, человечество достигнет космических высот и вселенского уровня развития.

    Солнце в мифологии

    Культ яркого золотого диска, дарящего свет и тепло, был широко распространён по всему Земному шару в древности. Ему поклонялись, обожествляли, молились, делали бесконечные жертвоприношения. Солнце воспевали и славили.

    Центральный бог целого ряда пантеонов древности – не что иное, как наше небесное светило. Не удивительно, что оно стало символом могущества, богатства, власти. А его земным олицетворением всегда было золото.

    Солнце в мифологии превращали в живое существо, именно от него вели свой род древние цари и правители. Более того, земные жители испытывали невероятный страх и ужас перед Солнцем, всячески боясь его гнева и погасания. Древние народы Америки приносили жертвы, чтобы умилостивить верховное божество. А греки создали красивую космогоническую легенду о Фаэтоне.

    И в наши дни проявляются отголоски былого: то вдруг появится сообщение о взрыве любимой звезды, то её пятна начнут разрастаться до небывалых размеров. Такие страхи невероятно живучи и устойчивы и часто попадают на «благодатную почву слепых верований» несведущих обывателей.

    Интересное видео о Солнце

    Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

    Источник

    Adblock
    detector