Как сфотографировать Луну крупным планом. Основы астрофотографии.
John Ciemgals, 2012
Автор статьи — John Ciemgals, специально для Фотосайта Артема Кашканова.
Здравствуйте! В этой статье мы рассмотрим основные методы и способы фотографирования луны. Посредством телескопа луну можно снимать тремя способами:
- Прямой фокус – телескоп используется в качестве объектива для фотокамеры, аналогично обычным фотообъективам.
- Афокальная съемка – фотоаппарат с объективом настраивается на изображение даваемое связкой телескоп-окуляр.
- Проекционная съемка – система телескоп – окуляр проецирует изображение прямо на фотоплёнку/матрицу.
Для первого и третьего способа необходима возможность снимать объектив фотоаппарата, т е подразумевается зеркальная камера (DSLR). В этой статье мы рассмотрим только первый способ – съемку в прямом фокусе.
Немного теории
При съемке в прямом фокусе телескопа, равно как и при съемке объективом для нас особенно важны два показателя – апертура и фокусное расстояние в миллиметрах. Апертура – это диаметр светособирающего элемента объектива, от его размера зависит разрешающая способность системы и соответственно, насколько мелкие детали можно будет запечатлеть на снимке. От фокусного расстояния, в свою очередь, зависит масштаб – насколько «большой» будет луна на снимке, а также, насколько можно будет реализовать разрешение объектива. Соответственно, производная из этих двух величин – светосила – влияет на длительность необходимой экспозиции. Светосила — это фокусное расстояние (в миллиметрах), деленное на апертуру (тоже в миллиметрах). К примеру, телескоп с фокусным расстоянием 900 мм и размером апертуры 100 мм имеет светосилу f/9. Попробуем проиллюстрировать, как всё выглядит в объективе при открытой диафрагме и что, собственно, меняется при ее закрывании:
На картинке выше показан ход лучей света (красными) в объективе без диафрагмирования – работает вся апертура. Синим цветом показана объективная линза, красный (свет) сходиться на точке фокуса объектива (обычно там находиться матрица фотоаппарата). А на этом рисунке диафрагма (зелёный) приводит к уменьшению апертуры:
На деле, как мы видим, в фотообъективах диафрагма занимается уменьшением апертуры. Получается, что у объектива есть одна постоянная характеристика — фокусное расстояние, а диафрагма, по сути, меняет апертуру. Отсюда и всё то, что мы практически при съемке имеем – при минимальной диафрагме картинка не очень качественная (из-за того, что оптика при такой светосиле рисует не лучшим образом, и далека от дифракционного качества), при средних значениях диафрагмы уже весьма хорошо (обычно это значения в районе F/5.6 – 11). При дальнейшем закрытии диафрагмы опять начинается деградация картинки – на сей раз уже из-за того что рабочая апертура становиться столь малой, что влияние начинает оказывать дифракция световых волн.
Итак, что же и как нам нужно для съемки луны крупным планом?
Во-первых – объектив или телескоп с соответствующим фокусным расстоянием. В начале статьи можно видеть, каков размер луны на кадре при использовании фотоаппарата с матрицей формата APS-C (кроп 1.6) и объектива с фокусным расстоянием 900 мм. В принципе, при 1200мм она уже заполняет почти весь кадр, а при больших фокусных расстояниях в кадр попадает только фрагмент луны.
Определение масштаба изображения для максимальной детализации
Размер пикселя: d = 0.00642361 мм (6.4 мкм для Canon EOS 350D) Разрешающая способность телескопа: a = 1.15″ (для 100мм апертуры) коэффициент для частоты Найквиста: Nq = 2 Требуемое фокусное расстояние находится по формуле: F = 206265 * d / (a / Nq) В вашем случае получается F = 2304 мм. Для тех, кому считать лень – практически всюду получается значение в районе f/22 – это, практически реализация максимального разрешения объектива, «максимально разумное увеличение», т.е. более длинные фокусы нам новых деталей уже не дадут. «Увеличение» на снимке при апертурах порядка 100 мм и более будет уже весьма существенным – я бы для начала советовал поснимать на фокусных в районе 600 – 1300 мм. «Растянуть» фокусное на телескопе, при необходимости, можно поместив в фокусер между фотоаппаратом и объективом линзу Барлоу – они обычно бывают 2х, 3х, 4х и 5х (это кратности). Т.е. используя телескоп 100/900 совместно с 2х барлоу, его фокусное станет эквивалентным 1800 мм, число f вырастет с 9 до 18 со всеми вытекающими — экспозицию при прочих равных надо будет длинней. Если вместо объектива будет использоваться телескоп, то для сопряжения будет нужно Т2 т-кольцо для соответствующего фотоаппарата, и, возможно, Т-адаптер на 1.25” или 2”.
Вообще съемка через телескоп – это довольно обширная тема сама по себе, и сейчас мы в неё углубляться не будем, ограничившись общими сведениями. Далее нам необходима цифровая зеркалка с полностью ручным управлением и возможностью преподъёма зеркала. Ещё нужен устойчивый штатив ( вообще при съемке небесных «стационарных» объектов лучше всего пользовать астрономический штатив (т. н. монтировку, моунт) экваториального типа с приводом – тогда слежение за объектом будет осуществляться без вашего участия, что не только даст удобство (объект никуда не будет «убегать» из поля зрения), но также уменьшит возможность смаза при относительно длинных выдержках с использованием длинных фокусных расстояний. Для сведения – луна, как и звёзды, перемещается по небу со скоростью примерно 1 градус дуги за 4 минуты. Угловой размер луны – половина градуса, т.е. 30 секунд дуги. Чтобы осуществить спуск затвора не сотрясая камеру необходим спусковой тросик или беспроводной пульт д/у.
Возможно, полезным будет возможность рассмотреть увеличенное изображение при фокусировке через видоискатель – например, насадку с изломом и увеличением 2.5х на искатель. Если у камеры есть «лайфвью» с возможностью увеличения – это очень хорошо. По выставлению диафрагмы на фотообъективах ничего подсказать не могу – тут надо в каждом конкретном случае искать компромисс между временем экспозиции и резкостью (как известно, у фотообъективов наилучшая резкость обычно достигается не на минимальных значениях диафрагмы, и, по сути, являет собой компромисс между «кривостью» оптического тракта и рабочей апертурой, ибо увеличением диафрагменного числа уменьшается рабочая апертура, а это значит – уменьшается теоретически достижимое объективом разрешение. У телескопов такой проблемы нет, они являются дифракционно-ограниченными приборами, т.е. их реальная разрешающая способность ограничивается особенностями природы света (по крайней мере, для центральной части поля зрения), так что в общем случае их дополнительно диафрагмировать, уменьшая рабочую апертуру не имеет смысла. Надо учитывать и факторы влияния атмосферы и важность термостабилизации оборудования.
Каждый из нас не раз замечал, как струиться воздух над костром, раскалённым шоссе, меняя очертания предметов. И чем больше апертура и увеличение, тем больше сей эффект выражен. Подразделить его можно на 3 группы:
1. Общая атмосферная турбулентность — тут уж ничего не поделаешь. Бывают ночи с крайне неспокойной атмосферой, от этого звёзды «мерцают».
2. неудачно выбранное место съемок – на асфальтовой, бетонной площадке, которая за день на солнце нагрелась, и всю ночь остывая будет «струить», на линии визирования есть отапливаемый дом, и т.д.
3. Нетермостабилизированное оборудование – при больших перепадах температуры, пока сам телескоп/объектив достаточно не остынет, хорошего изображения также можно не ждать – и чем больше масштаб изображения, тем более велико влияние всего вышеупомянутого. При дельте температур порядка 20 – 30 градусов термостабилизация объективов может занять более часа. При этом, как уже говорилось, чем больше «увеличение» (длиннее фокус), тем больше влияние всего, и чем меньше – тем, соответственно, проще и легче во всех смыслах.
Съемка
Итак, всё у нас готово к съемке – камера установлена на штатив или моунт, разрешён преподьём зеркала, к камере подсоединен дистанционный спуск, установлен предпочтительный режим и параметры съемки. Наводимся на луну – грубую наводку можно осуществить глядя вдоль оси объектива, потом – глядя в искатель камеры. Фокусируемся – как считаем лучше. Если у камеры есть лайфвью, я бы рекомендовал фокусироватся по нему с выставкой достаточного увеличения на нём. Делаем снимок, смотрим на экранчике – нет ли явной недо- или переэкспозиции? Снимаем побольше кадров, в т.ч. на один – два шага меняя экспопару в обе стороны.
Как правило, значительная часть кадров в такого рода съемках при последующем рассмотрении в полном масштабе оказываются негодными (опять же – чем больше фокусное расстояние, и соответственно, масштаб изображения, тем больше процент брака в общем). Посему, надо набрать достаточное количество, чтобы было из чего отобрать.
Источник
Как снимать через телескоп
Фотокамера (зеркалка, системная камера или даже компакт) соединяется с телескопом практически так же, как с обычной фотооптикой.
Вы когда-нибудь пробовали сфотографировать Луну или звездное небо? Если вы при этом использовали обычный фотоаппарат с небольшим зумом или камеру мобильного устройства, то снимок, скорее всего, получился менее впечатляющим, чем изображение, видимое невооруженным глазом. Про то, чтобы снимать скопления звезд или галактики и речи не идет. Все дело в объективе.
Как подобрать телескоп
Идеальные объективы для фотосъемки небесных тел – это телескопы. Они обладают подходящими фокусными расстояниями и сконструированы так, чтобы вносить минимум искажений. Любительские телескопы различаются, прежде всего, оптической системой и фокусным расстоянием. Для фотографии подойдет любая из систем: зеркальная (рефлектор), линзовая (рефрактор) и зеркально-линзовая.
Последняя предпочтительнее: телескоп с такой конструкцией компактен, дает изображение хорошего качества, в нем присутствуют элементы для устранения явных дефектов картинки вроде хроматических аберраций. По зеркально-линзовой оптической системе сделаны некоторые фотообъективы с фокусными расстояниями 500 и 1000 мм.
По-своему хороши и рефлекторы: это самая простая из всех конструкций. Она вообще не содержит линз, чем обусловлены, с одной стороны, минимальные искажения и светопотери, а с другой – относительно низкая цена. Свойство зеркального телескопа «переворачивать» изображение в случае астрофотографии не будет проблемой.
От фокусного расстояния зависит масштаб изображения, которое вы получите на снимке. Чем оно больше, тем выше кратность вашего «объектива». Если при наблюдении звезд увеличение корректируется окуляром, то в фотосъемке окуляр не участвует. Фокусные расстояния от 500 мм уже вполне подходят для астрофотографии. Телескопы с фокусными расстояниями от 1000 мм и более навести сложнее. Зато и фотографировать можно более далекие и незаметные объекты.
Чем больше диаметр трубы телескопа, тем выше светосила «объектива». Для того чтобы сфотографировать часть луны, подойдет даже телескоп с апертурой около 50 мм. Большие значения диаметра позволят фотографировать менее яркие и контрастные объекты вроде туманностей и скоплений галактик.
Желательно приобретать телескоп в комплекте с треногой-монтировкой. Многие фотографии небесных объектов делаются на длинных выдержках, а из-за вращения Земли выбранный участок неба постоянно будет смещаться относительно наблюдателя. Поэтому нелишним будет механизм отслеживания объекта. Данная функция имеется практически во всех компьютеризированных монтировках, даже самых простых. Иногда она реализуется при помощи электропривода, который устанавливается на механическую экваториальную монтировку и вращает телескоп вокруг выбранной оси. Азимутальная монтировка и тем более обычный фото- или видеоштатив не предназначены для длительного и равномерного ведения небесных тел.
T-кольцо для зеркалок Canon
Конструкция в сборе
Можно ли подключить компакт/системную камеру
Системная камера или фотоаппарат со съемным объективом соединяются с телескопом практически так же, как с обычной фотооптикой. В общем случае понадобятся две недорогие детали: универсальный Т-адаптер для крепления к окулярному узлу (1,25 или 2 дюйма) и переходник на нужный байонет. Таким образом можно присоединить любую цифровую или пленочную камеру.
С компактными камерами дело обстоит и сложнее, и проще одновременно. Переходники для них существуют, но при подборе важен не бренд фотоаппарата, а габариты. Вот почему выбирать адаптер лучше с камерой, учитывая, насколько далеко выдвигаются линзы при зумировании и фокусировке. Различных конструкций много, но наиболее удобна состоящая из площадки с винтом для камеры и регулируемого крепления на окулярный узел.
Астрофотография способна зафиксировать то, чего не увидеть в телескоп глазами. Для нее требуется не так много оборудования. Фото Луны можно получить через окно собственной квартиры даже при минимальной подготовке. Для съемки более сложных и интересных объектов понадобится терпение, время, календари, прогноз погоды и поездки за город. Однако трудно придумать более интересный способ оторваться от суеты и получить необычные фотографии.
Источник
Как снимать луну через телескоп
Астр ономическая фотография представляет собой самую интересную область для любителей астрономии. Это великолепная возможность запечатлеть красоту ночного неба, а также разделить свое увлечение с друзьями, даже при отсутствии под рукой телескопа.
Раньше считалось, что астрономическая фотография очень сложна для астрономов-любителей. Но это не совсем так, к тому же после появления цифровых и специальных астрономических камер, съемка астрономических объектов стала более доступна.
Существуют несколько видов астрономической фотографии, которые различаются по сложности и стоимости необходимого оборудования. И для того чтобы получить первые снимки вам не потребуются серьезные материальные вложения.
Астрономическая фотография с использованием объектива фотокамеры
Большинство людей считают, что для получения снимков звездного неба требуется дорогой телескоп, но это не так. Некоторые варианты съемки астрономических объектов возможны вообще без телескопа. Например, обзорный снимок звездного неба может быть получен с использованием старой пленочной фотокамеры и надежного штатива. Таким способом вы можете фотографировать созвездия, метеорные дожди, а также сближения небесных тел Солнечной системы.
Такие снимки не требуют серьезных затрат и специальных навыков. Все, что вам потребуется — это надежный штатив и фотокамера, позволяющая получать снимки с выдержкой от 1 до 30 секунд.
Во время получения снимков с такими выдержками важны максимальная жесткость фотоштатива, а также чувствительная пленка или использование больших значений ISO для цифровых фотокамер.
Таким образом вы можете получать наиболее детальные изображения с небольшими выдержками. Помните, что при установке фотокамеры на штатив, фотокамера не поворачивается вслед за видимым вращением ночного неба, и при слишком длительных выдержках изображения звезд будут выглядеть в виде полос или дуг. Чем больше фокусное расстояние объектива фотокамеры или телескопа, тем меньшие выдержки доступны, и для определения приемлемых выдержек следует поэкспериментировать.
В некоторых случая вы можете захотеть получить снимки, на которых будет видно видимое перемещение звезд на ночном небе. Пути движения звезд образует дуги на ночном небе, и для получения таких снимков фотокамера на штативе подходят лучше всего. В таких случаях даже старая фотокамера позволяет получить превосходные результаты. Просто установите фотокамеру на штатив и наведите ее на Полярную звезду. Затем, выберите режим съемки «С выдержкой от руки» (Bulb), и получите снимок с выдержкой от нескольких минут до часа или больше. Вы получите великолепный снимок, на котором звезды будут выглядеть в виде дуг на ночном небе из-за вращения Земли, свет звезд формируют светлые полосы на пленке или матрице фотокамеры.
Астрономическая фотография с ведением используется при работе с экваториальной монтировкой. Экваториальная монтировка нужна для того, чтобы следить за видимым перемещением небесных объектов. При правильной настройке монтировки, фотокамера поворачивается вслед за движением ночного неба, при этом объекты остаются в поле зрения фотокамеры неподвижными. Телескоп может выполнять функцию объектива фотокамеры, или фотокамера с объективом устанавливается на корпус оптической трубы телескопа.
Сделать это достаточно просто, а результаты будут просто поразительными. Для этого подойдет даже экваториальная монтировка начального уровня, оснащенная приводом по часовой оси. Например, экваториальная монтировка EQ1 позволяет получать детальные снимки с выдержкой в несколько минут. 130-мм телескоп-рефлектор Ньютона на экваториальной монтировке EQ2 — это превосходный выбор для начинающего астронома-наблюдателя, а также для первых шагов в астрономической фотографии.
Основы астрономической фотографии с использованием видеокамеры (цифровой окулярной камеры)
Наведите телескоп на объект. Если вы используете экваториальную монтировку с приводом по часовой оси и правильной полярной настройкой, дальнейшее слежение за объектом телескоп производит автоматически. Если экваториальная монтировка не оснащена приводом по часовой оси, или вы используете азимутальную монтировку (например, телескоп системы Добсона), потребуется в процессе съемки вручную наводить телескоп на объект (гидировать). Это несколько усложняет задачу.
Рассмотрим случай, когда для съемки используется экваториальная монтировка с приводом по часовой оси. После наведения на объект, снимите окуляр с фокусировочного узла телескопа и установите вместо него цифровую окулярную камеру. Сфокусируйтесь, контролируя изображение объекта на экране подключенного к цифровой окулярной камере компьютера или другого видеоустройства. После достижения резкости изображения, вы можете либо наблюдать изображение на экране, либо сохранять изображения в памяти компьютера. Если вы сохраняете изображения, вы можете потом воспользоваться различным программами для их сложения и обработки. Более сложные платные программы обеспечивают большие возможности в обработке изображений. Цифровая окулярная камера, ноутбук и практически любой телескоп станут прекрасным комплектом для наблюдений. С таким оборудованием могут наблюдать одновременно несколько человек, это великолепная возможность разделить свое хобби с близкими.
Но существует и особая область астрономической фотографии — фотографирование в главном фокусе телескопа с использованием видео- или фотокамеры.
Некоторые астрономы-любители также с успехом используют для съемки на видеокамеры телескопы системы Максутова-Кассегрена. Оптическая схема Максутова-Кассегрена особенно хорошо подходит для съемки на видеокамеру благодаря того, что такие телескопы имеют большие фокусные расстояния и обеспечивают высокую контрастность изображений. Кроме того, такие телескопы очень портативны, легко собираются и удобны в транспортировке.
Многие считают что это самый высокий уровень астрономической фотографии. Таким способом можно получить великолепные снимки практически любого объекта глубокого космоса. Если вы вспомните какой была самая красивая астрономическая фотография из всех, которые вы видели, то скорей всего окажется, что она была получена именно таким способом. Возможно, что наиболее известные такие снимки были получены в рамках проекта “Глубокого обзора Хаббла” (Hubble Deep Field), в главном фокусе космического телескопа Хаббл с суммарной выдержкой более 100 часов! Компания Sky-Watcher предлагает большое количество высококачественных монтировок и телескопов, позволяющих получать снимки любых объектов. Мы предлагаем очень популярные экваториальные монтировки SynScan, входящие в серии «Standard» и «Pro». Эти высокоточные компьютеризированные экваториальные монтировки осуществляют автоматический поиск 14 000 объектов, включенных в стандартную базу данных, а при подключении монтировки к компьютеру с установленной программой-планетарием, возможно автоматическое наведение телескопа на любой известный объект во Вселенной!
Источник