Меню

Как устроена вселенная сверхновые звезды

Как устроена вселенная сверхновые звезды

В космосе существуют просто огромные звезды некоторые из них в десятки раз тяжелее нашего солнца а некоторые в сотни раз больше. Чем тяжелее звезда тем быстрее она горит, когда эти гигантские звезды начинают стареть и умирать в них ускоряются ядерные реакции. В отличии от парных звезд в массивных одиночных звездах образуется большое количество элементов, после того как водород превращается в гелий, гелий в углерод а углерод в кислород гигантские звезды не становятся белыми карликами, вместо этого они продолжают гореть образовывая в своем ядре новые элементы.

Железо поглощает всю энергию ядерного синтеза. В отсутствие энергии которая направлена из вне, гравитация начинает брать вверх, гигантская звезда, обречена. Когда стабильность звезды нарушается, полная гравитация приводит к разрушению ядра это происходит с такой невероятной силой что даже атомы внутри ядра начинают распадаться, по мере того как ядро уменьшается а его плотность увеличивается, аккумулируется огромное количество энергии, и вот теперь звезда взрывается.

При взрыве звезд имеющих массу в сто раз больше нашего солнца возникаю настолько огромные сверхновые что ученные называют их гиперновыми. При взрыве гиперновой звезды гигантская звезда гравитация настолько велика что превращает ядро в черную дыру и черная дыра немедленно начинает поглощать умирающую звезду.

Сверхновые открыли нам тайны вселенной, эти взрывающиеся звезды стали недостающим звенов в наших знаниях о устройстве вселенной. Некоторые ученные считают что эра сверхновых подходит к концу, что звезды небольшие и не очень яркие как наше сонце будут встречаться все чаще а гиганты все реже. Сверхновые подарили нам галактики, солнечные системы, звезды и планеты они создали нас и все что мы видим, они соиденяют в себе разрушение и созидание, судьба вселенной в пыли умирающих звезд.

Источник

Битва титанов: как черная дыра столкнулась с нейтронной звездой

Большая международная группа астрономов отчиталась в журнале Astrophysical Journal Letters о первых наблюдениях за столкновением и слиянием черной дыры с нейтронной звездой. Два подобных события были зафиксированы с разницей всего 10 дней. Подробное изучение этих катаклизмов может многое рассказать о самых экзотических объектах во Вселенной.

Когда пространство волнуется

Нейтронные звезды и черные дыры — вероятно, самые необычные объекты во Вселенной. Первые отличаются чудовищной плотностью: при массе порядка солнечной они имеют диаметр в считанные километры. Кубический сантиметр такого вещества весит сотни миллионов тонн. У вторых плотность вообще теоретически бесконечна, так что у них даже поверхности нет, а есть горизонт событий — граница невозврата, из-за которой не может вырваться даже свет.

Ученым очень далеко до того, чтобы воспроизвести что-нибудь подобное в лаборатории. Зато эти объекты, возникшие на испытательных полигонах самой природы, дают физикам возможность проникнуть в самые глубокие свойства материи. Свой интерес и у астрономов, ведь нейтронные звезды и черные дыры — это остатки светил, взорвавшихся как сверхновые. Изучая их, можно многое узнать о том, как рождаются, живут и умирают звезды.

В 2015 году в исследовании этих сгустков сверхплотной материи была открыта новая глава — впервые были зафиксированы гравитационные волны от столкновения двух черных дыр.

Гравитационная волна — это колебание пространства-времени, которое слегка меняет расстояния между предметами. Если такая волна накроет нас за утренним кофе, стол, за которым мы сидим, будет периодически становиться то ближе, то дальше. И это даже трудно будет назвать движением в обычном смысле: будет меняться сама дистанция между двумя точками в пространстве.

Правда, мы этого не почувствуем. Изменения расстояний незаметны даже в микроскоп, потому что гравитационные волны необычайно слабы. Идея приборов, все же способных их фиксировать, была выдвинута советскими учеными Михаилом Герценштейном и Владиславом Пустовойтом еще в 1960-х, но лишь полвека спустя технологии развились достаточно, чтобы осуществить этот замысел.

Расположенная в США пара детекторов LIGO регистрирует изменение расстояний на величину, которая много меньше диаметра протона. Этот дуэт, обошедшийся в $365 млн, настолько чувствителен, что фиксирует даже квантовые шумы, не говоря уж о таких «огромных» воздействиях, как движение молекул в деталях прибора. Третий и пока последний действующий детектор гравитационных волн — расположенный в Италии VIRGO. Еще один подобный инструмент под названием KAGRA строится в Японии.

Теоретически гравитационные волны порождает любое тело, движущееся с ускорением, так что окружающее пространство буквально переполнено ими. На практике даже такие шедевры инженерной мысли, как LIGO и VIRGO, фиксируют лишь самые мощные гравитационные всплески, порожденные масштабными космическими катастрофами — столкновениями черных дыр или нейтронных звезд.

Давным-давно в далекой галактике

На сегодняшний день обнаружены уже десятки всплесков гравитационных волн. Почти все порождены столкновениями черных дыр друг с другом, в результате которых они сливаются в единую черную дыру. Физики очень ценят эти наблюдения. Благодаря им, например, совсем недавно подтвердилось теоретическое предсказание Стивена Хокинга, что площадь горизонта событий никогда не уменьшается, что бы ни происходило с черной дырой.

Читайте также:  Вселенная не от твоих ошибок

Большим открытием стало первое столкновение двух нейтронных звезд, зафиксированное в 2017 году. Подобные «ДТП», в отличие от столкновений черных дыр, порождают не только гравитационные волны, но и вспышку, которую можно наблюдать в телескопы. Астрономы изучили это событие во всех возможных диапазонах, от радиоволн до гамма-лучей, и выяснили много интересного. Правда, специалисты до сих пор спорят, что же получилось при слиянии двух столкнувшихся объектов — нейтронная звезда или черная дыра.

Не хватало лишь гибридного варианта: столкновения нейтронной звезды с черной дырой, при котором участники «ДТП» сливаются и превращаются в новую черную дыру. Правда, однажды наблюдалось слияние черной дыры с телом, о котором трудно было сказать наверняка, является оно нейтронной звездой или черной дырой. Это случилось 14 августа 2019 года. Эксперты были почти уверены, что в черную дыру врезалась именно звезда, СМИ запестрели заголовками, но в итоге выяснилось, что небесное тело было подозрительно массивным, на грани возможного для нейтронной звезды. Так что, вполне возможно, это была все-таки черная дыра, пусть и самая легкая в истории наблюдений.

Теперь же астрономы объявили сразу о двух событиях, которые надежно классифицируются как гибридные. Удивительно, но они были обнаружены друг за другом с разницей всего в 10 дней. Первый всплеск гравитационных волн достиг Земли 5 января 2020 года, а второй — 15 января. По традиции, эти события обозначили GW200105 и GW200115. Здесь GW означает «гравитационные волны» (gravitational waves), а цифры маркируют дату события.

Всплеск GW200105 был вызван тем, что нейтронная звезда массой от 1,7 до 2,2 солнечной столкнулась и слилась с черной дырой массой от 7,4 до 10,1 солнечной. Это произошло в 550–1270 млн световых лет от Земли. Для сравнения: расстояние от Млечного Пути до галактики Андромеды составляет всего 2,5 млн световых лет. Даже при минимальной оценке дистанции получается, что по земному времени катастрофа произошла еще до наступления палеозойской эры. И только теперь гравитационные волны достигли Земли, при том, что они движутся со скоростью света.

Ученые не могут точно сказать, где именно случился древний катаклизм. Во время наблюдения был включен лишь один из пары детекторов LIGO, а для менее чувствительного VIRGO сигнал оказался слишком слабым. Поэтому направление на источник сигнала было определено не слишком точно. Область неба, в которой он мог бы находиться, по площади в 34 тысячи раз больше полной Луны.

А вот всплеск GW200115 «видели» все три действующих детектора, так что «подозрительный» участок неба куда меньше — всего 2900 полных лун. В этом катаклизме нейтронная звезда массой 1,2–2,2 солнечной врезалась в черную дыру массой от 3,6 до 7,5 солнечной. А случился он в 650–1470 млн световых лет от Земли.

У экспертов нет единого мнения, порождает ли столкновение черной дыры с нейтронной звездой видимую вспышку. Несколько телескопов прозондировали области неба, из которых пришли сигналы GW200105 и GW200115, но не нашли ничего примечательного.

Зато благодаря долгожданному открытию специалисты оценили, как часто происходят подобные катаклизмы. Оказалось, что это воистину редкие птицы. В кубе пространства с ребром в один гигапарсек (3,26 млрд световых лет!) случается лишь от 10 до 120 подобных катастроф в год. Правда, это если считать, что измеренные в событиях GW200105 и GW200115 массы типичны для участников столкновений «нейтронная звезда + черная дыра». Допуская более широкий диапазон масс, ученые получили чуть более оптимистичные оценки: от 60 до 240 катаклизмов.

Теперь исследователям предстоит подробно изучить данные, собранные о гравитационных всплесках GW200105 и GW200115. Возможно, они расскажут о свойствах черных дыр или нейтронных звезд что-нибудь новое и интересное.

Мнение редакции может не совпадать с точкой зрения автора

Источник

Как одна вспышка света изменила наше представление о сверхновых звездах

Потрясающая вспышка ультрафиолетового света от взрывающегося белого карлика была обнаружена астрономами только во второй раз и может дать исследователям важные подсказки о том, что подстегивает гибель этих древних, остывающих звезд. Чрезвычайно редкий тип взрыва сверхновых даст ученым шанс раскрыть несколько давних загадок, в том числе о том, что заставляет белых карликов взрываться, как темная энергия ускоряет космос и как Вселенная создает тяжелые металлы — такие как железо. Рассказываем все о сверхновых: что их вызывает, какие бывают типы сверхновых; о самой большой звезде и о ближайшем к нам белом карлике. И о том, почему эта ультрафиолетовая вспышка изменила представление ученых о сверхновых звездах.

Что такое сверхновая?

Сверхновая звезда — это взрыв звезды. Это самый большой взрыв в космосе. Как правило, сверхновые звезды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долгое время была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.

Читайте также:  Чего не мог придумать человек чего нет во вселенной

Где происходят сверхновые?

Сверхновые часто встречаются в других галактиках. В 1604 году Йоханнес Кеплер обнаружил последнюю наблюдаемую сверхновую в Млечном пути. Телескоп Чандра НАСА обнаружил остатки более новой сверхновой. Она взорвалась в Млечном пути более 100 лет назад.

Что вызывает сверхновую?

Сверхновая звезда случается в тех звездах, у которых происходит изменение в ее ядре или центре. Изменение может происходить двумя разными способами, и оба приводят к сверхновой. Таким образом, сверхновые звезды делятся на два типа.

Первый тип сверхновых звезд. «Воровство» энергии, которое приводит к взрыву

Первый тип сверхновой происходит в двойных звездных системах. Двойные звезды — это две звезды, которые вращаются вокруг одной и той же точки. Одна из звезд, углеродисто-кислородный белый карлик, крадет вещество у своей звезды-компаньона. В конце концов белый карлик накапливает слишком много материи. Из-за слишком большого количества вещества звезда взрывается, в результате чего появляется сверхновая.

Сверхновые типа I случаются немного реже и происходят в двойных звездных системах. Двойные звезды — это две звезды, которые вращаются вокруг одной и той же точки.

Одна звезда в паре — белый карлик, длинный мертвый остаток звезды главной последовательности, такой как наше Солнце. Вообще белые карлики — это звезды, состоящие из электронно-ядерной плазмы, лишенные источников термоядерной энергии и слабо светящиеся благодаря своей тепловой энергии. Они постепенно остывают и краснеют. Ближайший известный белый карлик — Сириус B, находящийся на расстоянии в 8,6 световых лет от Земли.

Вернемся к странной паре звезд. Компаньоном может быть звезда любого другого типа, например, красный гигант, звезда главной последовательности или даже другой белый карлик.

Для процесса взрыва сверхновой важно то, чтобы они были достаточно близки: у белого карлика должна быть возможность украсть вещество у своего партнера. Когда украденное количество достигает в 1,4 раза больше массы Солнца, белый карлик взрывается как сверхновая и полностью испаряется.

Из-за этого соотношения 1,4 астрономы используют сверхновые типа Ia в качестве «стандартных свечей» для измерения расстояний во Вселенной. Так как они знают, сколько энергии было при взрыве карлика, астрономы могут рассчитать расстояние до него.

Второй тип сверхновых звезд. Как и почему умирают огромные звезды?

Это сверхновые, которые возникают, когда умирают массивные звезды. Это звезды, масса которых превышает массу Солнца во много раз.

Самая тяжелая, самая горячая, самая яркая из известных науке звезд во Вселенной — это R136a1, звезда в звездном скоплении R136 в эмиссионной туманности NGC 2070, расположенной в Большом Магеллановом облаке.

Это изображение Хаббла показывает центральную область туманности Тарантул в Большом Магеллановом облаке. Молодое и плотное звездное скопление R136 можно увидеть в правом нижнем углу изображения. Это скопление содержит сотни молодых голубых звезд, среди которых самая массивная звезда, обнаруженная во Вселенной до сих пор.

Предоставлено: НАСА, ЕКА, P Crowther (Университет Шеффилда)

Звезды, как вы знаете, синтезируют водород в их ядрах. Эта реакция высвобождает энергию в форме фотонов и это «давление света» усиливает гравитацию звезды, сжимая ее.

Наше Солнце не имеет массы, способной поддерживать реакции синтеза с элементами помимо водорода или гелия. Поэтому когда весь гелий будет израсходован, реакции синтеза прекратятся, Солнце превратится в белого карлика и начнет остывать.

Если у вас есть звезда, которая превышает массу Солнца в 8–25 раз, она может соединить более тяжелые элементы в своем ядре. Когда у массивной звезды заканчивается водород, она переключается на гелий, а затем на углерод, неон и так далее. Однако когда процессы в ядре доходят до железа, реакция синтеза требует больше энергии, чем производит.

Внешние слои звезды падают внутрь за доли секунды, а затем детонируют как сверхновая типа II. Остается только плотная нейтронная звезда в качестве остатка.

Но если исходная звезда имела вес выше, чем у Солнца, более чем в 25 раз, происходит такой же коллапс ядра. Но сила материала, падающего внутрь, сжимает ядро ​​в черную дыру.

Это изображение показывает две массивные черные дыры в галактике OJ 287. Меньшая черная дыра вращается вокруг большей, которая также окружена газовым диском. Когда маленькая черная дыра врезается в диск, она дает вспышку ярче 1 триллиона звезд.

Чрезвычайно массивные звезды, или гипергиганты с массой, более чем в 100 раз выше солнечной, просто взрываются без следа. Фактически вскоре после Большого взрыва появились звезды с сотнями, а может быть, даже тысячами масс Солнца, состоящие из чистого водорода и гелия. Эти монстры прожили бы очень короткую жизнь, взорвавшись с непостижимым количеством энергии.

Проще говоря, второй тип сверхновой происходит в конце жизни одной звезды. Когда у нее кончается ядерное топливо, часть ее массы попадает в ядро. Ядро ​​настолько становится настолько тяжелым, что не может выдержать собственную гравитационную силу. Оно разрушается, что приводит к гигантскому взрыву сверхновой.

Читайте также:  Планета подобная земле есть во вселенной

Одна вспышка может объяснить, как взрываются белые карлики в сверхновые звезды

Недавно астрономы засвидетельствовали вспышку ультрафиолетового света после взрыва белого карлика в сверхновую звезду. Это всего лишь второй раз, когда такое событие наблюдалось астрономами.

Белый карлик — плотный остаток красных гигантских звезд, когда они взрываются. Но, как мы знаем, и белые карлики тоже могут взорваться. Ученые все еще пытаются выяснить почему — и эта вспышка света может помочь им найти ответ.

Необычная сверхновая была впервые обнаружена астрономам в декабре 2019 года. Они смогли наблюдать сверхновую и последующую ультрафиолетовую вспышку всего через один день после взрыва.

Событие называлось SN2019yvq и было прослежено до места, расположенного недалеко от хвоста созвездия Дракон, в 140 млн световых лет от Земли. Оно было названо сверхновой «Тип Ia» (произносится как «один-A»), что часто случается, когда взрывается белый карлик. Но ультрафиолетовая вспышка была неожиданной.

Только однажды подобное событие наблюдалось ранее. Предыдущий взрыв белого карлика, связанный с ультрафиолетовой вспышкой, был опубликован в исследовании 2015 года.

Но больше всего интересует исследователей тот факт, что эти два события не совсем похожи.

По словам ученых, они были уникальными в своем роде и кроме ультрафиолетовой вспышки, не имеют ничего общего. Астрофизик Адам Миллер предположил, что белые карлики могут взорваться, не достигнув предела Чандрасекара. Это верхний предел массы, при котором звезда может существовать как белый карлик. Если масса звезды превышает его, то она становится нейтронной звездой. Существование предела было доказано индийским астрофизиком Субраманьяном Чандрасекаром.

Ранее считалось, что белый карлик ниже массы или предела Чандрасекара, что в 1,4 раза больше массы Солнца, навсегда останется белым карликом. Но последнее исследование, опубликованное в Astrophysical Journal, изменило представление ученых о суперновых и белых карликах.

Что такого в этой ультрафиолетовой вспышке?

Ультрафиолетовая вспышка длилась всего пару дней, но этого было достаточно для интригующего понимания.

Раньше астрономы думали, что единственный способ возникновения такой ультрафиолетовой вспышки — это если материал, взорванный звездой, столкнулся с большой соседней звездой-компаньоном, которая быстро нагреет материал, достаточный для излучения ультрафиолетового света. Ультрафиолетовое излучение указывает на то, что сильный источник тепла находится внутри или рядом с белым карликом. Но ведь белые карлики охлаждаются с возрастом. Одна вспышка света уже изменила наше представление о сверхновых звездах.

Есть четыре потенциальных гипотезы для ультрафиолетовой вспышки, замеченной в этом событии.

  • Белый карлик поглощает свою звезду-компаньона и становится настолько большим и нестабильным, что взрывается. Материалы белого карлика и звезды-компаньона сталкиваются, вызывая вспышку ультрафиолетового излучения.
  • Чрезвычайно горячий радиоактивный материал в ядре белого карлика смешивается с его внешними слоями, в результате чего внешняя оболочка достигает более высоких температур, чем обычно.
  • Внешний слой гелия зажигает углерод внутри белого карлика, вызывая чрезвычайно горячий двойной взрыв и ультрафиолетовую вспышку.
  • Два белых карлика сливаются, вызывая взрыв со встречными выбросами, которые испускают ультрафиолетовое излучение.

Как только исследователи узнают, что вызвало взрыв, они применят эти результаты, чтобы узнать больше о формировании планеты и темной энергии.

Поскольку большая часть железа во Вселенной создается сверхновыми типа Ia, лучшее понимание этого явления может рассказать нам больше о нашей собственной планете. Например, железо из взорвавшихся звезд составляло ядро ​​всех каменистых планет, включая Землю.

Если вы хотите понять, как образовалась Земля, вам нужно знать, откуда появилось железо и «сколько нужно железа». Понимание того, как взрывается белый карлик, дает нам более точное понимание того, как оно создается и распределяется по всей Вселенной.

Разгадка темной энергии уже близко

Темная энергия — гипотетическая форма энергии, равномерно заполняющая все пространство Вселенной и проявляющаяся в антигравитации, то есть гравитации, отталкивающей, а не притягивающей массивные тела. Была введена в математическую модель Вселенной, чтобы объяснить, по какой причине она расширяется с ускорением.

Белые карлики уже играют огромную роль в современном понимании физиками темной энергии. Физики предсказывают, что все белые карлики имеют одинаковую яркость при взрыве. Таким образом, сверхновые типа Ia считаются «стандартными свечами», позволяя астрономам точно рассчитать, как далеко находятся взрывы от Земли. Использование сверхновых для измерения расстояний привело к открытию темной энергии, что было признано Нобелевской премией по физике 2011 года.

У ученых нет прямого способа измерить расстояние до других галактик. Большинство галактик фактически удаляются от нас. Если в далекой галактике есть сверхновая типа Ia, мы можем использовать ее для измерения комбинации расстояния и скорости, которая позволяет нам определять ускорение Вселенной. Темная энергия по-прежнему остается загадкой. Но эти сверхновые звезды — лучший способ исследовать темную энергию и понять, что это такое. И, главное, насколько быстро она ускоряет Вселенную.

Источник

Adblock
detector