Меню

Как узнали что вселенная расширяется

Можно ли разгадать тайну расширения Вселенной?

Немногим больше ста лет назад никто на нашей планете не знал, что Вселенная расширяется. Но несмотря на все беды и несчастья, которые ХХ век принес человечеству, именно это столетие ознаменовано научно-техническим прогрессом. За невероятно короткий отрезок времени мы узнали о мире и Вселенной больше, чем когда-либо. Идею о том, что наша Вселенная расширяется на протяжении последних 13,8 миллиардов лет впервые предложил бельгийский физик Жорж Леметр в 1927 году. Два года спустя американскому астроному Эдвину Хабблу удалось подтвердить эту гипотезу. Он установил, что каждая галактика удаляется от нас и чем она дальше, тем быстрее это происходит. Сегодня существует множество способов, с помощью которых ученые могут понять, как быстро наша Вселенная увеличивается в размерах. Вот только цифры, которые исследователи получают в процессе измерения, каждый раз получаются разными. Но почему?

C момента своего рождения наша Вселенная расширяется со все возрастающей скоростью.

Самая большая загадка Вселенной

Как мы знаем сегодня, существует тесная связь между расстоянием до галактики и тем, как быстро она удаляется. Так, скажем, галактика на расстоянии 1 мегапарсек от нашей планеты (один мегапарсек приблизительно равен 3,3 млн световых лет) удаляется со скоростью 70 километров в секунду. А та галактика, что находится несколько дальше, на расстоянии двух мегапарсек, движется в два раза быстрее (140 км/сек).

Интересно и то, что сегодня существует два основных подхода для определения возраста Вселенной или, по-научному, постоянной Хаббла. Разница между этими двумя группами заключается в том, что один набор методов рассматривает относительно близкие объекты во Вселенной, а другой – очень отдаленные. Однако каким бы способом не воспользовались ученые, результаты каждый раз получаются разные. Выходит, либо мы делаем что-то не так, либо где-то далеко во Вселенной происходит нечто абсолютно неведомое.

Исходя из того, что быстрее всего от Земли отдаляются самые далекие галактики, ученые сделали вывод о том, что когда-то все галактики находились в одной точке – по времени это событие совпадает только с Большым взрывом.

В исследовании, недавно опубликованном на сервере препринтов airxiv.org, астрономы, изучая близлежащие галактики, использовали умный метод измерения расширения Вселенной под названием флуктуации поверхностной яркости (surface brightness fluctuations). Это причудливое название, но оно включает в себя идею, которая на самом деле интуитивно понятна.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Представьте, что вы стоите на опушке леса, прямо перед деревом. Так как вы стоите очень близко, вы видите только одно дерево в своем поле зрения. Но стоит отойти немного назад, как перед глазами возникнет больше деревьев. И чем дальше вы будете отходить, тем больше деревьев будете видеть. Примерно то же самое происходит с галактиками, которые ученые наблюдают с помощью телескопов, только гораздо сложнее.

Как узнать скорость расширения Вселенной?

Чтобы получить хорошие статистические данные, астрономы наблюдают за галактиками, расположенными довольно близко к Земле, примерно на расстоянии 300 миллионов световых лет и ближе. Однако наблюдая за галактиками, необходимо учитывать пыль, фоновые галактики и звездные скопления, которые видно на полученных с помощью телескопа изображениях.

Вселенная хитра. Начиная с 1990-х годов астрономы увидели, что очень далекие взрывающиеся звезды всегда были расположены дальше, чем показывали простые измерения. Это привело их к мысли, что сейчас Вселенная расширяется быстрее, чем раньше, что, в свою очередь, привело к открытию темной энергии — таинственной силы, ускоряющей Вселенское расширение.

На сегодняшний день время Большого взрыва, породившего Вселенную, ученые оценивают с помощью компьютерного моделирования.

Как пишут авторы научной работы, когда мы смотрим на очень далекие объекты, мы видим их такими, какими они были в прошлом, когда Вселенная была моложе. Если скорость расширения Вселенной тогда была иной (скажем, 12-13, 8 миллиарда лет назад), чем сейчас (менее миллиарда лет назад), мы можем получить два разных значения для постоянной Хаббла. Или, быть может, разные части Вселенной расширяются с разной скоростью?

Но если скорость расширения изменилась, значит возраст нашей Вселенной совсем не такой, как мы думаем (ученые используют скорость расширения Вселенной, чтобы определить ее возраст). Это, в свою очередь, означает, что у Вселенной другой размер, а значит время, необходимое для того, чтобы что-то произошло, тоже будет другим.

«Если следовать этой цепочке рассуждений, то в конечном итоге окажется, что физические процессы, происходившие в ранней Вселенной, происходили в разное время. Еще, возможно, были задействованы другие процессы, влияющие на скорость расширения. В общем выходит какой-то бардак. Из чего следует, что либо мы недостаточно хорошо понимаем, как ведет себя Вселенная, либо неправильно ее измеряем», – отмечают авторы исследования.

В любом случае постоянная Хаббла является предметом горячих споров в астрономическом сообществе. Так как новое исследование добавило еще больше вопросов, борьба с неопределенностью будет долгой. Когда-нибудь, конечно, наше понимание космоса изменится. Но когда это произойдет, космологам придется искать что-то еще, о чем можно будет поспорить. Что они обязательно сделают.

Читайте также:  Какие знаки мне посылает вселенная

Источник

Откуда мы знаем, что Вселенная расширяется?

Сама идея о том, что Вселенная расширяется — довольно новая. Хотя если поразмыслить логически люди могли додуматься до нее уже в 17-18 веках — сразу после открытия закона Всемирного тяготения. Ведь действительно — если все тела притягиваются друг к другу с силой прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояний между ними, то с течением времени вся материя во вселенной сбилась бы в одну «кучу». Однако ничего похожего мы не наблюдаем. Это возможно в двух случаях а) закон Всемирного тяготения неверен б) расстояние между массами увеличивается быстрее, чем сила тяготения успевает его уменьшить.

Однако до первой половины 20-го века никто до этого не додумался. Даже великий Эйнштейн не представлял себе возможности расширяющейся вселенной, хотя она и напрямую следовала из его теории относительности. Первым понял, что вселенная расширяется великий американский астроном Эдвин Хаббл.

Открытие других галактик

До Хаббла считалось, что вся вселенная — это галактика Млечный Путь. Все началось с того, что Хабблу удалось измерить расстояния до далеких звезд в туманности Андромеды и оказалось, что они находятся слишком далеко, чтобы быть частью Млечного Пути.

Многие не хотели принимать его всерьез, ведь он был очень молод и не имел авторитета, но его аргументы были неоспоримы, а математические выкладки точны, и научное сообщество приняло эти результаты, совершившие впоследствии переворот в космологии. В следующие годы Хаббл открыл несколько десятков галактик за пределами Млечного Пути.

Красное и синее смещение

Общеизвестно, что свет обладает свойствами как электромагнитных колебаний, так и потока частиц. Видимый нами свет зависит от длины волны световых электромагнитных колебаний. По одну сторону спектра находятся «красные» волны — длинноволновые колебания, а по другую — «сине-фиолетовые» волны — коротковолновые.

Источник

Загадка расширения Вселенной

Немногим больше ста лет назад никто на нашей планете не знал, что Вселенная расширяется. Но несмотря на все беды и несчастья, которые ХХ век принес человечеству, именно это столетие ознаменовано научно-техническим прогрессом. За невероятно короткий отрезок времени мы узнали о мире и Вселенной больше, чем когда-либо.

Идею о том, что наша Вселенная расширяется на протяжении последних 13,8 миллиардов лет впервые предложил бельгийский физик Жорж Леметр в 1927 году. Два года спустя американскому астроному Эдвину Хабблу удалось подтвердить эту гипотезу. Он установил, что каждая галактика удаляется от нас и чем она дальше, тем быстрее это происходит. Сегодня существует множество способов, с помощью которых ученые могут понять, как быстро наша Вселенная увеличивается в размерах. Вот только цифры, которые исследователи получают в процессе измерения, каждый раз получаются разными. Но почему?

Самая большая загадка Вселенной

Как мы знаем сегодня, существует тесная связь между расстоянием до галактики и тем, как быстро она удаляется. Так, скажем, галактика на расстоянии 1 мегапарсек от нашей планеты (один мегапарсек приблизительно равен 3,3 млн световых лет) удаляется со скоростью 70 километров в секунду. А та галактика, что находится несколько дальше, на расстоянии двух мегапарсек, движется в два раза быстрее (140 км/сек).

Интересно и то, что сегодня существует два основных подхода для определения возраста Вселенной или, по-научному, Постоянную Хаббла. Разница между этими двумя группами заключается в том, что один набор методов рассматривает относительно близкие объекты во Вселенной, а другой – очень отдаленные. Однако каким бы способом не воспользовались ученые, результаты каждый раз получаются разные. Выходит, либо мы делаем что-то не так, либо где-то далеко во Вселенной происходит нечто абсолютно неведомое.

Исходя из того, что быстрее всего от Земли отдаляются самые далекие галактики, ученые сделали вывод о том, что когда-то все галактики находились в одной точке – по времени это событие совпадает только с Большым взрывом.

В исследовании, недавно опубликованном на сервере препринтов airxiv.org, астрономы, изучая близлежащие галактики, использовали умный метод измерения расширения Вселенной под названием флуктуации поверхностной яркости (surface brightness fluctuations). Это причудливое название, но оно включает в себя идею, которая на самом деле интуитивно понятна.

Представьте, что вы стоите на опушке леса, прямо перед деревом. Из-за того, что вы стоите очень близко, вы видите только одно дерево в своем поле зрения. Но стоит отойти немного назад, как вы увидите больше деревьев. И чем дальше вы будете отходить, тем больше деревьев возникнет у вас перед глазами. Примерно то же самое происходит с галактиками, которые ученые наблюдают с помощью телескопов, но гораздо сложнее.

Читайте также:  Определяет строение всей вселенной

Как узнать скорость расширения Вселенной?

Чтобы получить хорошие статистические данные, астрономы наблюдают за галактиками, расположенными довольно близко к Земле, примерно на расстоянии 300 миллионов световых лет и ближе. Однако наблюдая за галактиками, необходимо учитывать пыль, фоновые галактики и звездные скопления, которые видно на полученных с помощью телескопа изображениях.

Вселенная, однако, хитра. Начиная с 1990-х годов астрономы увидели, что очень далекие взрывающиеся звезды всегда были расположены дальше, чем показывали простые измерения. Это привело их к мысли, что сейчас Вселенная расширяется быстрее, чем раньше, что, в свою очередь, привело к открытию темной энергии — таинственной силы, ускоряющей Вселенское расширение.

На сегодняшний день время Большого взрыва, породившего Вселенную, ученые оценивают с помощью компьютерного моделирования.

Как пишут авторы научной работы, когда мы смотрим на очень далекие объекты, мы видим их такими, какими они были в прошлом, когда Вселенная была моложе. Если скорость расширения Вселенной тогда была иной (скажем, 12-13, 8 миллиарда лет назад), чем сейчас (менее миллиарда лет назад), мы можем получить два разных значения для Постоянной Хаббла. Или, быть может, разные части Вселенной расширяются с разной скоростью?

Но если скорость расширения изменилась, значит возраст нашей Вселенной совсем не такой, как мы думаем (ученые используют скорость расширения Вселенной, чтобы проследить ее возраст). Это, в свою очередь, означает, что у Вселенной другой размер, а значит время, необходимое для того, чтобы что-то произошло, тоже будет другим.

Если следовать этой цепочке рассуждений, то в конечном итоге окажется, что физические процессы, происходившие в ранней Вселенной, происходили в разное время. Еще, возможно, были задействованы другие процессы, влияющие на скорость расширения. В общем выходит какой-то бардак. «Из чего следует, что либо мы недостаточно хорошо понимаем, как ведет себя Вселенная, либо неправильно ее измеряем», – отмечают авторы исследования.

В любом случае Постоянная Хаббла является предметом горячих споров в астрономическом сообществе. Новое исследование, однако, добавило еще больше вопросов, так что борьба с неопределенностью будет долгой. Когда-нибудь, конечно, наше понимание космоса изменится. Но когда это произойдет, космологам придется искать что-то еще, о чем можно будет спорить. Что они обязательно сделают.

Источник

Спросите Итана №52: как давно расширение Вселенной начало ускоряться?

Родись мы на пару миллиардов лет раньше, мы бы об этом не знали

В конце концов, “Вселенная” — это гипотеза, как и “атом”, и ей надо дать свободу обладать свойствами, делать противоречивые и невозможные для конечной материальной структуры вещи.
-Уильям де Ситтер

Уже год еженедельно я прошу вас отправлять мне вопросы и предложения, и я выбираю те, что мне понравились для еженедельной колонки “Спросите Итана”. Мы обращались к темам от мельчайших до крупнейших масштабов, от земных дел до космических, и от начала Вселенной до её конца. На этой неделе меня спрашивает Хемза Азри по поводу вот чего:

Пытаюсь узнать, есть ли новые данные наблюдений по поводу фазы ускорения Вселенной! Когда оно началось?

Поговорим о Вселенной и её расширении.

Меньше 100 лет назад мы узнали, что спиральные туманности в нашем небе — это не протозвёзды, возникающие в нашей галактике, а целые галактики, находящиеся от нас на расстояниях от миллионов до миллиардов световых лет. Почти сразу же мы поняли, что существует удивительная связь между расстоянием до галактики и её скоростью движения относительно нас.

Хотя в Общей теории относительности на тот момент было несколько точных решений, одно из них очень хорошо описывало Вселенную: расширяющаяся вселенная, однородная на самых больших масштабах. Хотя наша Вселенная не так уж и однородна на масштабах от нескольких десятков до миллионов световых лет, изучая масштабы в десятки миллиардов световых лет, мы видим, что отклонения от однородности весьма малы. В среднем, это решение – метрика Фридмана-Леметра-Робертсона-Уолкера – описывает Вселенную лучше других.

Она говорит нам, что пространство между галактиками – или между любыми структурами, не связанными друг с другом или с ещё более крупными структурами гравитацией – должно расширяться. Если мы хотим узнать, как оно расширяется, то есть, с какой скоростью, нам нужно знать две вещи:

  • скорость расширения в любой момент времени
  • типы и пропорции материи и энергии, присутствующие во Вселенной

И всё! Если мы узнаем два этих момента, мы сможем понять и судьбу Вселенной, и скорость расширения, которая была, есть и будет, в любой момент, начиная с Большого взрыва.

Читайте также:  Проверочная работа по теме земля во вселенной 5 класс

Первый пункт довольно прост, и у нас есть множество путей решения этой задачи. Изучая удалённость разных объектов Вселенной и их скорость удаления от нас, мы можем узнать сегодняшнюю скорость расширения. Это один момент, но его просто подсчитать. Хотя по поводу точного значения скорости в 1990-х шли споры, сейчас мы установили, что она примерно равна 67 км/с/Мпк (где Мпк – примерно 3 260 000 световых лет) с точностью в 2-3 км/с/Мпк.

Ответ на второй вопрос мы получили из комбинации наблюдений за объектами разных типов, включая удалённые объекты вроде сверхновых, космическое микроволновое излучение, крупномасштабные структуры и барионные акустические колебания.

И в результате у нас получилось, что состав Вселенной примерно такой:

  • 0,01% — фотоны, или излучение в виде света
  • 4,9% — обычная материя на основе протонов, нейтронов, электронов
  • 27% — тёмная материя, включая нейтрино, которых в ней в сумме содержится 0,1%, а остальное – неизвестно
  • 68% — тёмная энергия, которая, по нашим наблюдениям, не отличается от космологической константы

Вот из этого, насколько мы знаем, и состоит Вселенная.

Говоря про ускорение Вселенной, мы имеем в виду нечто конкретное. Мы не имеем в виду, что текущая скорость расширения, 67 км/с/Мпк, увеличивается. Представьте себе удалённую галактику на любом расстоянии от нас. Пусть это будет расстояние в 10 Мпк, тогда скорость расширения будет 670 км/с.

С такой скоростью от нас удаляется определённая галактика. По мере расширения Вселенной она становится менее плотной, и плотность энергии падает. Поскольку скорость расширения зависит от плотности энергии, она тоже падает. Но поскольку Вселенная всё это время расширялась, галактика, за которой мы следим, отодвинется дальше от нас.

Подумайте об этом: скорость расширения в будущем получается меньше, но конкретные объекты оказываются дальше от нас. Если нам нужно посчитать видимую скорость объекта по мере продвижения в будущее, нам надо перемножить два этих числа, поэтому вопрос состоит в том, что меняется быстрее – уменьшается скорость расширения или увеличивается расстояние до объекта?

А это зависит от того, каков процент энергии Вселенной находится в виде материи и излучения, плотность которых со временем уменьшается, и какой процент содержится в виде космологической константы, плотность которой остаётся неизменной. Посмотрим, как материя, излучение и тёмная энергия (космологическая константа) меняются со временем.

Сейчас во Вселенной доминирует тёмная энергия, поэтому скорость расширения падает не так быстро, как увеличивается расстояние: к тому времени, как скорость расширения упадёт на 10%, объект будет от нас в два раза дальше, чем сейчас – то есть, он ускоряется. Но в прошлом у Вселенной было гораздо меньше тёмной энергии в процентном соотношении, и гораздо больше материи. А ещё раньше над ними преобладало излучение. Когда материи или излучения было больше, скорость расширения падала быстрее, и Вселенная замедлялась. В наше время, 13,8 миллиардов лет после рождения, только относительно недавно произошёл момент, когда объекты, двигающиеся от нас, начали делать это с ускорением!

Математически, переход от замедления, которым Вселенная занималась первые несколько миллиардов лет, к ускорению, которое происходит последние несколько миллиардов лет, происходит, когда плотность тёмной энергии достигает значения в половину общей плотности материи. Сейчас она только перевалила через отметку в два раза большую, чем плотность материи, поэтому ускорение продолжается уже давно, с тех пор, как размер Вселенной составлял 62% от текущего. Немного подсчитав и обратившись к астрофизике, можно рассчитать возраст Вселенной, в котором она прошла через критическую отметку – оказывается, это случилось, когда ей было 7,8 миллиардов лет, или примерно 6 миллиардов лет назад – за 1,5 миллиарда лет до формирования Солнечной системы.

Если мы сожмём всю историю Вселенной до одного календарного года, то начало ускорения Вселенной придётся на 27 июля.

Это число очень чувствительно к малым изменениям параметров плотности материи, тёмной энергии и скорости расширения. Если поменять их на 2-3%, время окончания замедления и начала ускорение может поменяться на 1-2 миллиарда лет! Тёмная энергия не доминировала в составе Вселенной ещё 1,9 миллиарда лет (помните, в момент перехода от замедления к ускорению её количество в два раза меньше, чем материи), и должно пройти ещё 4,! Миллиарда лет до достижения сегодняшнего количества, когда её в два раза больше, чем материи.

Но вот в такой ускоряющейся Вселенной мы живём, и вот когда случился переход! Спасибо за отличный вопрос, и если у вас есть свои идеи, отправляйте их в нашу колонку. На следующей неделе начнётся её второй год жизни.

Источник

Adblock
detector