Ученые раскрыли, как возникают самые тяжелые элементы во Вселенной
Группа международных исследователей вернулась к формированию Солнечной системы 4,6 миллиарда лет назад, чтобы по-новому взглянуть на космическое происхождение самых тяжелых элементов. И обнаружила, как именно же они образовались и во время какого процесса.
Тяжелые элементы, с которыми мы сталкиваемся в нашей повседневной жизни, такие как железо и серебро, не существовали в начале Вселенной 13,7 миллиарда лет назад. Они были созданы во времени в результате ядерных реакций, называемых нуклеосинтезом, которые объединили атомы вместе. В частности, йод, золото, платина, уран, плутоний и кюрий — некоторые из самых тяжелых элементов — были созданы с помощью особого типа нуклеосинтеза, называемого процессом быстрого захвата нейтронов или r-процессом.
Вопрос о том, какие астрономические события могут производить самые тяжелые элементы, оставался загадкой на протяжении десятилетий. Сегодня считается, что r-процесс может происходить во время сильных столкновений между двумя нейтронными звездами, между нейтронной звездой и черной дырой или во время редких взрывов после смерти массивных звезд. Такие высокоэнергетические события происходят во Вселенной очень редко. Когда это происходит, нейтроны включаются в ядра атомов, а затем превращаются в протоны. Поскольку элементы в периодической таблице определяются количеством протонов в их ядрах, процесс r создает более тяжелые ядра по мере захвата большего количества нейтронов.
Некоторые из ядер, образованных в результате r-процесса, радиоактивны, и для их распада на стабильные ядра требуются миллионы лет. Йод-129 и кюрий-247 — два таких ядра, которые были образованы до образования Солнца. Они были включены в твердые тела, которые в конечном итоге упали на земную поверхность в виде метеоритов. Внутри этих метеоритов в результате радиоактивного распада образовался избыток стабильных ядер. Сегодня это превышение можно измерить в лабораториях, чтобы определить количество йода-129 и кюрия-247, которые присутствовали в Солнечной системе непосредственно перед ее образованием.
Почему эти два ядра r-процесса такие особенные? У них есть обычное свойство: они распадаются почти с одинаковой скоростью. Другими словами, соотношение между йодом-129 и кюрием-247 не изменилось с момента их создания миллиарды лет назад.
«Это удивительное совпадение, особенно с учетом того, что эти ядра являются двумя из пяти радиоактивных ядер r-процесса, которые можно измерить в метеоритах. Когда соотношение йода-129 и кюрия-247 застыло во времени, как доисторическое ископаемое, мы можем напрямую взглянуть на последнюю волну производства тяжелых элементов, которая сформировала состав Солнечной системы и всего в ней».
Бенуа Котэ, обсерватория Конколы
Йод с его 53 протонами создается легче, чем кюрий с его 96 протонами. Это связано с тем, что для достижения большего числа протонов кюрия требуется больше реакций захвата нейтронов. Как следствие, соотношение йода-129 и кюрия-247 сильно зависит от количества нейтронов, которые были доступны во время их создания.
Команда рассчитала соотношение йода-129 к кюрию-247, синтезируемые столкновениями нейтронных звезд и черных дыр, чтобы найти правильный набор условий, воспроизводящих состав метеоритов. Они пришли к выводу, что количество нейтронов, доступных во время последнего события r-процесса перед рождением Солнечной системы, не могло быть слишком большим. В противном случае было бы образовано слишком много кюрия по сравнению с йодом. Это означает, что очень богатые нейтронами источники, такие как материя, оторвавшаяся от поверхности нейтронной звезды во время столкновения, вероятно, не играли важной роли.
Так что же создало эти ядра r-процесса ? Хотя исследователи могли предоставить новую информативную информацию о том, как они были созданы, они не смогли определить природу астрономического объекта, который их создал. Это связано с тем, что модели нуклеосинтеза основаны на неопределенных ядерных свойствах, и до сих пор неясно, как связать доступность нейтронов с конкретными астрономическими объектами — такими, как массивные взрывы звезд и сталкивающиеся нейтронные звезды.
С помощью этого нового диагностического инструмента достижения в области астрофизического моделирования и понимания ядерных свойств могут выявить, какие астрономические объекты создают самые тяжелые элементы Солнечной системы.
Источник
Откуда берутся тяжелые металлы
Слияние нейтронных звезд происходит очень редко, в нашей Галактике, например, — раз в десять тысяч лет, а образование новых элементов идет считанные миллисекунды после него. Однако, этот процесс является важным источником элементов тяжелее никеля и основным источником стабильных элементов тяжелее церия. Похоже, уже очень скоро нам расскажут о том, что сразу несколько телескопов увидели это столкновение и образовавшиеся в его результате гравитационные волны. Мы решили объяснить читателям N + 1, как это открытие поможет нам разобраться в происхождении различных элементов во Вселенной.
Несмотря на стремительное развитие астрофизики за последние 100 лет, наши знания о происхождении многих элементов таблицы Менделеева оставляет желать лучшего. Общая картина более или менее сложилась благодаря работам таких титанов, как Артур Эддингтон, Георгий Гамов и Фред Хойл, — водород и гелий появились в результате Большого взрыва, бомбардировка межзвездной среды космическими лучами ответственна за литий, бериллий, бор, а элементы от углерода до молибдена (вместе с примкнувшими к ним барием, вольфрамом и титаном) появляются в результате звездного нуклеосинтеза — реакций ядерного синтеза в ядрах звезд либо во время их жизни, либо в результате их яркой смерти (которое мы наблюдаем в виде вспышек сверхновых).
Элементы с массовым атомным числом больше 94 (и технеций) получены людьми, еще часть элементов весьма нестабильна, распадается при всяком удобном случае и в природе почти не встречается (полоний, астат и прочие).
Происхождение различных элементов. Фиолетовым выделены те атомы, которые появляются в результате слияния нейтронных звезд.
Это качественная картина, но при попытке дать количественный анализ начинаются проблемы: вспышки сверхновых, будучи одними из самых энергетически мощных взрывов во Вселенной, все равно не дают нужного количества тяжелых элементов. Ряд ученых еще в конце 1990-х провели компьютерные симуляции и пришли к выводу, что необходимые элементы можно получить, только если очень точно «подкрутить» параметры сверхновых (сечение захвата нейтрино или свойства слабого взаимодействия) и задать им нереалистичные начальные условия.Кроме того, ряд тяжелых элементов отсутствует у очень старых звезд. В них уже есть кремний, кальций и даже железо (то есть они собирались из водородного облака, которое было до этого обогащено остатками давно взорвавшихся сверхновых), но нет ни рубидия, ни йода, ни золота. Однако эти же элементы есть в более молодых звездах, которые, по идее, должны были образовываться из таких же облаков с остатками сверхновых. Не правда ли, странным выглядит предположение, что сверхновые через пару миллиардов лет после Большого взрыва поменяли принцип работы и стали производить элементы совсем в другой пропорции?
Значит, во Вселенной должны быть другие источники тяжелых элементов. В 1989 году было выдвинуто предположение, что таким источником могут быть слияния нейтронных звезд, вращающихся друг вокруг друга. Несмотря на то, что это намного более редкие события (мало того, что нейтронная звезда — достаточно экзотический объект, так ей еще нужно подобрать пару из такой же звезды), похоже, что за золото и платину в наших кольцах нам нужно сказать спасибо именно им.
Масса нейтронных звезд не очень велика (в среднем, она не должна превышать предел Оппенгеймера-Волкова, то есть около двух массой Солнца, иначе она станет черной дырой, хотя вращение или приливное взаимодействие со стороны звезды-компаньона может немного повысить этот предел), а в пространство после слияния выбрасывается и того меньше — около 10 процентов от их массы. Однако эффективность синтеза новых элементов во время слияния настолько высока, что этого оказывается достаточно для решения загадки недостающих тяжелых элементов. Подобная эффективность возникает благодаря быстрому нейтронному захвату или r-процессу — «вдавливанию» в ядра элементов разлетающихся от взрыва нейтронов. Само понятие «r-процесс» появилось в 1957 году, когда вышла фундаментальная статья B 2 FH (этой статье посвящена отдельная страница в Википедии!), в которой четверо ученых дали явлению название и предположили условия, необходимые для его протекания.
Откуда в нейтронной звезде, которая, по идее, должна состоять из нейтронов, тяжелые ядра? Дело в том, что нейтроны (и гипотетическая кварк-глюоная плазма) находятся только во внутренней части звезды, а внешняя ее «кора» — два километра из десяти — состоит из полноценных тяжелых элементов периодической таблицы Менделеева.
Когда две вращающиеся нейтронные звезды сближаются, это не похоже на столкновение двух бильярдных шаров: взаимное тяготение разрывает их внешние оболочки, срывая слой вещества со звезды, поэтому само слияние происходит в коконе из горячей плазмы, нейтронов и электронов. Сразу после слияния звезд часть массы переходит в гравитационные волны, основная масса становится либо очень быстро вращающейся нейтронной звездой, либо черной дырой, еще часть массы остается гравитационно связана с этим новым объектом и будет постепенно падать на него, но в то же время огромная энергия высвобождается в виде фотонов и ударной волны. Она сдувает весь внешний кокон ударной волной и высвобожденным из ядра потоком нейтронов. Именно эта концентрация в одном месте высокой температуры, плотной среды из атомов и гигантского потока нейтронов приводит к удивительным превращениям.
Компьютерная симуляция, описывающая среду сразу после слияния двух нейтронных звезд. Два спиральных рукава состоят из вещества внешней части нейтронных звезд, сорванных приливным взаимодействием с соседкой. Только материя, обозначенная серым цветом, будет выброшена из систем после взрыва, остальная часть будет вращаться вокруг образовавшегося объекта.
Источник
Учёные рассказали, как во Вселенной могло появиться золото
Исследователям удалось смоделировать образование во Вселенной химических элементов тяжелее железа.
Физики-теоретики из группы профессора Мичиганского университета Витольда Назаревича (Witold Nazarewicz) совместно с коллегами из Варшавского университета и Технического университета в Дармштадте смоделировали процесс синтеза тяжёлых химических элементов из лёгких, уточнив необходимые для этого условия. Результаты теоретической работы опубликованы в журнале
У любого атома есть ядро — центральная часть, где сосредоточена его основная масса. Формируется оно в процессе нуклеосинтеза. Считается, что образование тяжёлых и сверхтяжёлых атомных ядер из лёгких происходит во Вселенной в ходе последовательного захвата ими протонов и/или нейтронов.
Изначально молодая Вселенная состояла лишь из легчайшего элемента — водорода, с небольшими примесями соседнего гелия. Все элементы тяжелее них — вплоть до железа — образовались в ходе термоядерных реакций в недрах звёзд. Ключевым из этих механизмов является альфа-процесс — захват ядрами альфа-частиц. Однако для синтеза элементов тяжелее железа (например, золота) требуются ещё более высокие энергии, необходимые для последовательного захвата отдельных протонов или нейтронов. Такие энергии появляются только в мощнейших катастрофических событиях, таких как слияния нейтронных звёзд или взрывы сверхновых.
Такие астрофизические события делают возможными несколько механизмов нуклеосинтеза, самым многообещающим из которых считается быстрый r-процесс, требующий исключительно высокого содержания нейтронов и больших энергий. Где он происходит в действительности, до сих пор неизвестно.
Именно этот вопрос и решили подробнее изучить учёные. Опираясь на методы теории функционала плотности для расчёта структуры атомных ядер, авторы провели моделирование r-процесса как в сверхновых, так и в ходе слияния пары нейтронных звезд. Астрофизикам удалось рассчитать вероятности развития различных сценариев и указать на условия их протекания. Учёные резюмируют, что полученные данные помогут в дальнейшем поиске экспериментальных и наблюдательных свидетельств нуклеосинтеза в космосе и на ускорителях частиц, изначально отсеяв невозможные варианты. Всё это даст возможность понять, как в итоге образовались такие плотные металлы, как золото или платина.
Источник
Откуда берутся тяжелые элементы?
Доброго времени суток, любители астрономии!
Не забывайте поставить лайк, если статья показалась Вам интересной!
Ученым впервые удалось обнаружить в космосе только-только родившийся тяжелый элемент после столкновения пары нейтронных звезд.
Полученные данные проливают свет на то, как создаются самые тяжелые элементы во Вселенной.
Результаты также подтвердили, что » нейтронные звезды действительно состоят из нейтронов «, — рассказал новостному порталу space.com ведущий автор исследования Дарак Уотсон, астрофизик из Института Нильса Бора в Копенгагенском университете. » Звучит это глупо, но мы действительно не знали этого наверняка. Теперь, все что было найдено указывает на элементы, которые могли образоваться только в присутствии большого количества нейтронов «.
Три самых легких элемента во Вселенной — водород, гелий и литий. Они образовались в самые ранние моменты появления того космоса, который мы знаем. Большинство элементов, более тяжелых чем литий, вплоть до железа в периодической таблице, появились через миллиарды лет после «начала».
Но как были образованы элементы тяжелее железа, такие как золото или уран, долгое время было неизвестно. Предыдущие исследования предложили ключевую подсказку: чтобы атомы выросли до больших размеров, им нужно было быстро поглощать нейтроны. Так быстрый захват нейтронов, известный как » r-процесс «, происходит в природе только в экстремальных условиях, когда атомы бомбардируются большим количеством нейтронов.
Предыдущие исследования предполагали, что вероятным источником r-процесса являются последствия слияния нейтронных звезд.
В 2017 году астрономы впервые стали свидетелями слияния пары нейтронных звезд. Ученые сделали открытие, обнаружив гравитационные волны, которые образовались вследствие этого события. Это случилось на расстоянии 130 миллионов световых лет от Земли. Слияние получило название GW170817 .
Уотсон и его коллеги подозревали, что если более тяжелые элементы и образовались во время слияния, то сигнатуры их должны быть обнаружены в последствиях, известных как килонова . Они сфокусировались на длинах волн света или спектральных линиях, которые с помощью спектроскопии связали с конкретными элементами.
До сих пор не удавалось успешно рассмотреть тяжелые элементы в таких столкновениях, потому как во взрыве невозможно отличить один элемент от другого.
Однако, проведя повторный анализ данных слияния 2017 года, Уотсон с коллегами смогли определить сигнатуру стронция — тяжелого элемента . На Земле стронций естественным образом содержится в почве и концентрируется в определенных минералах
Ключ к этой удивительной (для ученых) находке может быть связан с призрачными частицами, известными как нейтрино , которые обычно проходят через обычную материю, но иногда могут сталкиваться с протонами или нейтронами.
Чтобы создать относительно «легкий» тяжелый элемент , такой как стронций, Вам нужно сначала уничтожить несколько нейтронов, а для этого нужно бомбардировать их нейтрино, чтобы они быстрее распались на протоны и электроны.
Несмотря на значительные успехи, обнаружить другие тяжелые элементы будет достаточно затруднительно, т.к. об атомарной структуре очень мало качественных данных из-за их сложной природы.
Подписывайтесь на канал, ставьте лайки, если было интересно, и будьте здоровы!
Источник