СОЛНЦЕ КРАСНОЕ ВЗОЙДЁТ
Наука и жизнь 1993 №9
Окраска неба, цвет Солнца и Луны, многие оптические и акустические явления определяются тем, что электромагнитные и упругие волны разной длины рассеиваются в атмосфере по-разному, подчиняясь закону Рэлея.
Кандидат физико-математических наук С. ТРАНКОВСКИЙ.
Летом мало кто видит восходящее солнце — оно встает слишком рано. Зато закаты предстают перед нами во всей своей красе: огромный шар, меняя свой цвет от ярко-красного до темно-бордового, медленно опускается по синему небу, окрашивая его в желтые, зеленые, розовые тона, и скрывается за горизонтом. Когда-то полагали, что воздух сам по себе имеет синий цвет и поэтому атмосфера поглощает красные лучи. Но тогда Солнце и Луна у горизонта казались бы более голубоватыми, чем в зените: лучи света от них, прежде чем достичь наблюдателя, проходят тем большую толщу воздуха, чем ниже опускается светило. После появления электромагнитной теории света стало ясно, что световые волны в атмосфере должны рассеиваться частицами, взвешенными в воздухе, как волны на воде — камнями и скалами, стоящими на их пути. Предположил и доказал это на опыте в 1868 году английский физик Дж. Тиндаль. Однако спустя три года Дж. У. Рэлей показал, что рассеяние света должно происходить и в идеально чистой атмосфере на ее оптических неоднородности — флуктуациях плотности. Неоднородности эти непрерывно возникают в результате случайного скопления молекул при их тепловом движении и мгновенно рассасываются, чтобы снова образоваться в другом месте.
Свет, проходящий через пустоту или сквозь абсолютно однородную среду, не рассеивается: размеры молекул в тысячи раз меньше длины световой волны, и свет идет, «не замечая» их. Неоднородности среды становятся своего рода призмами, которые рассеивают свет тем сильнее, чем значительнее плотность воздуха в них отличается от среднего значения. И, конечно, чем больше таких неоднородностей. Среда с оптическими неоднородностями размером 0,1-0,2 средней длины световой волны называется мутной.
В мутной среде световые волны разной длины рассеиваются по-разному: коротковолновое излучение, синяя часть спектра — сильнее, длинноволновая, красная — слабее. Зависимость рассеяния от длины волны очень сильна — она обратно пропорциональна четвертой степени длины волны. Значит, синий свет, длина волны которого (0,5 мкм) в 1,4 раза меньше длины волны света красного (0,7 мкм), в мутной среде рассеивается в (1,4) 4 =4 раза сильнее!
Электромагнитная волна, падая на молекулы вещества, взаимодействует с их электронами. Электроны, настолько слабо связанные с атомами, что под действием волны могут заметно смещаться (их называют поэтому «оптическими электронами»), испытывают периодическое ускорение, пропорциональное квадрату частоты, и порождают переменное магнитное поле. В поле возникает вторичная электромагнитная волна, амплитуда которой пропорциональна ускорению электрона, а интенсивность — квадрату амплитуды.
Таким образом, интенсивность излучаемого вторичного света пропорциональна четвертой степени частоты света падающего или — что то же самое — обратно пропорциональна четвертой степени длины его волны. Это вторичное излучение и представляет собою свет, рассеянный в мутной среде, а зависимость его интенсивности от длины волны называется законом Рэлея.
Частицы, размеры которых больше длины световой волны (0,5-0,7 мкм),рассеивают свет по преимуществу в направлении падающего луча, а распределение его интенсивности становится довольно сложным.
Частицы размером порядка 0,1 мкм рассеивают падающий свет одинаково вперед и назад и в поперечном направлении в два раза слабее, чем в продольном.
Эта зависимость называется законом Рэлея. Ею объясняется красный цвет закатного солнца, синий — неба, а также цвет морской воды (на мелководье к синему рассеянному свету примешивается жёлтый, отраженный от песчаного дна, и вода становится зеленой). По этой же причине предупредительные огни, стоп-сигиалы и прочие знаки опасности делают красными (их видно издалека), а красный фильтр на объективе фотоаппарата помогает при съемке в дымке. На таких снимках небо получается очень темным, почти черным, листва — светлой, а детали далеких предметов выходят довольно ясно. (Заметим попутно, что при помощи красного фильтра фотографы и кинооператоры изображают лунную ночь при съемке в яркий солнечный полдень.)
Синий фильтр, напротив, создает на снимке ощущение таинственного мира, скрытого за туманной завесой. Во время войны подъезды домов освещались синими пампами — их свет, быстро рассеиваясь в атмосфере, не был виден с воздуха.
Очень мелкие частицы рассеивают свет одинаково сильно по ходу падающего луча и против него и в 2 раза слабее — в перпендикулярном направлении. Соответственно изменяется и насыщенность цвета неба. Когда частицы становятся крупнее, зависимость эта оказывается гораздо более сложной. Свет начинает рассеиваться в основном вперед, по направлению падающего света, изменяется и его спектральный состав. Зависимость от длины волны становится не рэпеевской (Lambda 4 ), а квадратичной (Lambda 2 ). Делаясь еще крупнее, частицы начинают рассеивать все длины волн одинаково. Так происходит, когда лёгкая дымка уплотняется и превращается в молочно-белый туман. По этой причине жёлто-оранжевые «противотуманные» автомобильные фары на самом деле в тумане не работают: их свет там рассеивается столь же сильно, как и белый. Более того: в сильной дымке он становится красноватым, и его можно спутать с задними огнями удаляющегося автомобиля (бывает, с самыми печальными последствиями). В степях и пустынях белёсое небо — тревожный признак. Он говорит, что приближается сильный ветер, ураган, поднимающий в воздух тучи мелкого песка и пыли. И только дождь, «промыв» воздух, может возвратить небосводу синеву. Справедлива и примета: «Луна краснеет — к ветру и плохой погоде». Ветер интенсивно перемешивает слои воздуха разной температуры; количество флуктуации при этом резко возрастает.
Поставив несложный опыт, можно посмотреть, как меняются цвета проходящего и рассеянного света (см. рисунок.). В стеклянную банку наливают слабый раствор гипосульфита. Пучок белого света от диапроектора пропускают сквозь сосуд и фокусируют на бумажном экране, получая световой круг. Затем в банку по каплям добавляют разбавленную соляную кислоту (концентрацию растворов подбирают опытным путем). Через несколько минут из раствора начнет осаждаться продукт реакции — мелкодисперсная сера. Частички серы увеличиваются в размерах, и одновременно световое пятно на экране становится сперва жёлтым, а затем красным и, наконец, багровым, напоминая закатное солнце. Раствор в сосуде, бывший совершенно прозрачным в начале опыта, приобретает синюю окраску, которая в конце концов становится белёсой, как туман. Если подождать, пока частицы серы осядут на дно, раствор снова станет прозрачным, а световое пятно — белым.
Аналогичным образом ведут себя звуковые волны и волны на воде: низкие их частоты рассеиваются тоже гораздо слабее, чем высокие. Звуковые колебания взаимодействуют со средой совсем не так, как электромагнитные — они «раскачивают» не отдельные электроны в молекулах воздуха, а целиком участки повышенной плотности и взвешенные в нем частицы. Особенно сильно рассеивает и поглощает звук туман. Звуки в тумане становятся глухими, низкими, и трудно определить, откуда они идут.
Интересные вещи происходят порой со звуком, отразившимся от далеких предметов — эхом. Дж. Рэлей исследовал случай, когда звук голоса, отраженного от стены соснового леса, повышался на октаву. Совершенно очевидно, что только за счет отражения от неподвижного препятствия частота звуковых колебаний возрасти не может. Но человеческий голос кроме основного тона содержит в себе множество дополнительных обертонов более высокой частоты, которые мы обычно не воспринимаем. Сосны, с их тонкой и редкой хвоей, служат для звука «мутной средой», которая низкие частоты хорошо пропускает, а высокие — отражает. К наблюдателю возвращаются только обертоны его голоса, а кажется, что весь звук внезапно стал выше.
Люди с обостренным творческим восприятием — писатели, поэты, композиторы — прекрасно знают эту особенность атмосферной акустики. В рассказе А. П. Чехова «Доктор» есть примечательная фраза:
«В это время со двора отчетливо донеслись звуки оркестра, игравшего на дачном кругу. Слышны были не только трубы, но даже скрипки и флейты». На открытом воздухе флейту и скрипку издалека можно услышать действительно только в особо благоприятных условиях.
А композиторы, изображая уходящий военный оркестр, не просто уменьшают громкость его звучания, но в первую очередь постепенно убирают все высокие звуки. Музыка звучит все тише, мелодия постепенно исчезает, и остаются только глухие удары большого барабана и затихающие вздохи бас-геликона. Полк ушел. Всходит красное солнце.
БЕЛЫЙ СВЕТ МЕНЯЕТ ЦВЕТ
Многие оптические явления, которые мы видим ежедневно, происходят из-за того, что свет с разной длиной волны на своём пути рассеивается по-разному.
Солнце вблизи горизонта — на восходе и на закате — всегда имеет красный цвет. Вечернее небо синим или голубым бывает очень редко — только когда воздух в приземном слое совершенно свободен от пыли и влаги. Цвета зари создают, смешиваясь, рассеянные в запыленной атмосфере световые волны разной длины.
Молочный шар светильника на эскалаторе станции метро «Маяковская» и матовый колпак настольной лампы. Молочное стекло, содержащее чрезвычайно мелкий непрозрачный краситель, служит для света «мутной средой», сильно рассеивающей коротковолновую часть спектра. Нить лампы, раскаленная добела, кажется поэтому темно-красной. Грубые царапины матового стекла рассеивают электромагнитные волны любой длины одинаково, и весь колпак лампы светится белым светом.
Смотрите так же статью Почему небо голубое?, в которой подробно объясняется эффект рассеяния света в атмосфере.
Источник
Почему Солнце на закате красное?
Закаты Солнца нередко порождают красивейшие картины. Небо и облака окрашиваются разными цветами — здесь и красный, и розовый, и желтый, и нежно-голубой. Ни один закат не повторяется! Очевидно, вся эта красота возможна благодаря тому, что заходящее Солнце меняет свой цвет с ярко-желтого на оранжевый и даже красный. Но почему так происходит? Почему солнце на закате красное?
На самом деле физика процесса очень простая.
Во время закатов Солнце часто бывает красным или оранжевым. Почему? Фото: Виталий Копа
Как известно, Земля окружена атмосферой (проще говоря, воздухом). И это очень хорошо, ведь мы ею дышим! Атмосфера состоит в основном из двух газов — азота и кислорода. Кроме того, в небольших количествах в ней присутствуют аргон, пары воды и углекислый газ. Все это существует в виде беспорядочно летающих вокруг нас и сталкивающихся друг с другом молекул.
Свет Солнца, прежде чем попасть в наши глаза, должен вначале преодолеть 150 миллионов километров — расстояние от Солнца до Земли (и в этом нет никакой проблемы — свет проделывает этот фокус всего за 8 минут), а затем пройти сквозь толщу атмосферы. И вот здесь у солнечного света начинаются проблемы.
Если вы помните, свет, который излучает Солнце, практически белый. Ну хорошо, возможно, чуть-чуть желтоватый. А что это значит? Это значит, что в пучке солнечного света присутствует свет самых разных длин волн — от фиолетового (длина волны которого составляет примерно 400 нм) до красного (760 нм). Больше всего в солнечном свете зеленого и желтого света, но, сливаясь и перемешиваясь с фиолетовым, синим, оранжевым и красным, он становится белым.
Но что происходит со светом, когда он проходит через земную атмосферу? Он сталкивается с беспорядочно летающими тут и там молекулами воздуха! Молекулы эти очень маленькие, но и длина волны видимого света такая же маленькая. Следовательно, часть света будет рассеяна в разные стороны и не дойдет до наших глаз. А может быть, и дойдет, но переотразившись от какой-нибудь другой молекулы.
Когда Солнце на закате, свет от него проходит через большую толщу атмосферы, чем днем, когда наше дневное светило находится вблизи зенита. Молекулы атмосферы поглощают и рассеивают синий свет гораздо лучше, чем красный, поэтому солнечный свет теряет коротковолновую составляющую и доходит до нас красноватым и сильно ослабленным.
Встает вопрос: одинаково ли рассеивается свет разных длин волн? Оказывается, нет, не одинаково. Чем короче длина волны, тем труднее избежать свету столкновения со встретившейся на его пути молекулой. Это и понятно — длинноволновому свету легче обогнуть препятствие, чем коротковолновому.
Следовательно, голубой и фиолетовый свет, идущий от Солнца будет лучше рассеиваться в небе, чем оранжевый и красный.
А теперь взгляните днем на небо. Какого оно цвета? Конечно, голубого, если только не затянуто облаками. А Солнце какого цвета? Скорее всего, желтое! Почему? Потому что ему не хватает того самого голубого и синего света, который был отнят и рассеян атмосферой Земли, чтобы быть белым!
Кстати, вот тут вы можете почитать, почему небо голубое. Но, я думаю, все уже ясно, верно?
Что же происходит на закате Солнца? А происходит очень интересная вещь: свет звезды проходит через бо́льшую толщу атмосферы, чем днем. Согласны? Значит, солнечный свет потеряет еще больше коротковолнового света, пока дойдет до нас! Доходит до того, что даже желтый и зеленый свет Солнца, рассеивающийся хуже, чем синий, также рассеивается в достаточных количествах, окрашивая небо в самые разные оттенки. В итоге непосредственно от Солнца доходит до нас только самый длинноволновый красный свет! И сама наша дневная звезда на закате бывает совсем не яркая. Еще бы — ведь большая часть его света была отобрана атмосферой!
Красоту закатов создают необычные краски и оттенки, которых не бывает на небе днем. Фото: Виталий Копа
Вот почему при закате Солнце красное!
Но подождите, скажете вы. Почему же тогда один закат отличается от другого? Почему заходящее Солнце бывает ярко оранжевым и даже желтым?
Это зависит от состояния атмосферы у горизонта в конкретный вечер. Взвешенные в воздухе мелкие частички усиливают эффект. Например, в степи закаты летом часто очень красивые из-за мелкой пыли в воздухе. Пыль легко отбирает у Солнца почти весь свет, так как ее частички гораздо крупнее, чем молекулы воздуха. Если посмотреть на Солнце сквозь пыль или дым пожара, оно всегда будет красным. (Самая крупная, обычная пыль, как и водяной пар, будет рассеивать весь свет Солнца равномерно.) У моря роль пыли часто играют частички соли, которые создают эффект Тиндаля.
Кстати, рассеяние света на крупных частицах — эффект Тиндаля — вы можете легко увидеть дома. Возьмите стакан, налейте воды и растворите в нем немного обычного мыла. Затем пропустите через стакан свет белого фонарика. На выходе он будет уже желтоватым!
Источник