Меню

Как выглядит жизненный цикл звезд подобных солнцу

Как происходит эволюция звёзд

Как известно, звезда — это гигантский раскаленный газовый шар, находящийся в состоянии равновесия. Внутри этого шара происходят термоядерные реакции, в результате которых вырабатывается энергия и излучается свет.
Практически любо тело во Вселенной имеет свой жизненный цикл. Собственно говоря, светила не исключения. Они также рождаются и умирают, как и другие тела. Правда, жизненный путь звезд, то есть последовательные изменения в течение всей её жизни, очень долгий. Ниже мы как раз рассмотрим основные этапы эволюции звезд.

Проксима Центавра

Стадии эволюции звезд

Основные этапы эволюции звезд, можно сказать, как у всех в нашей Вселенной.

Из них, главным образом, выделяют:

Но, как и мы отличаемся друг от друга, так и звёзды. Под влиянием разных факторов их жизненный путь у каждого свой. Всё как у людей. Нас даже создала одна природа и сила — сила нашей Вселенной.

Как появляются звёзды

Сначала в космическом пространстве образуются огромные газовые облака. На самом деле, эти холодные разреженные облака межзвёздного газа сжимаются под силой гравитации. Так начинается процесс звёздного формирования.

На его конечном этапе объект называют протозвездой. Вроде уже и не просто облако, но еще и не полноценное светило. Во время сжатия температура таких газовых облаков резко увеличивается. Из-за чего, в свою очередь, внутри них начинают происходить термоядерные реакции синтеза гелия из водорода.

Протозвезда

Главная последовательность

Именно в это время, то есть с началом ядерных процессов, рождается звезда. На данном этапе, чаще всего, она является представителем главной последовательности звезд. Правда, бывают и исключения. Например, субкарлики и коричневые карлики. Они отличаются небольшой массой и слабым ядерным синтезом.

Коричневый карлик

Между прочим стадия главной последовательности самая длинная в жизни светил (около 90% от общей продолжительности). Остальные же их этапы существования длятся значительно меньше. Вероятно, по этой причине во Вселенной преобладают звёзды, находящиеся именно на этой стадии развития. А вот как после неё будет проходить эволюционирование напрямую зависит от массы тела.

Эволюция звезд различной массы

Стоит отметить, что звездные тела имеют разные характеристики.

Низкая масса

Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.

К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода. Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.

Белый карлик

Средняя масса

Как оказалось, звёздная эволюция при средней массе тела проходит по следующему пути.
Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.

Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.

Читайте также:  Без меня солнце утром не вставало

Красный гигант

Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.

Массивные звезды

А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.

Конвективная зона

Как происходит эволюция звезд на последнем этапе

Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.
На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.
Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.

Планетарная туманность Глаз Бога

Жизнь светил с высокой массой

Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.
И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.
Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.

По данным учёных, во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы. Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.

Эволюция звёзд

Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.

Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.

В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.

Читайте также:  Кладовая солнца план по всему рассказу

Источник

Как выглядит жизненный цикл звезды?

Когда вы смотрите на ночное небо, вы видите тысячи звезд. Наше собственное Солнце — желтая карликовая звезда в середине своего жизненного цикла. Как они все туда попали? Вот более пристальный взгляд на жизненный цикл звезды, и как размер и масса одного из этих звездных тел влияют на ее существование.

В начале

В отличие от популярных СМИ, звезды не просто появляются полностью сформированными с серией планет, окружающих их. Этот процесс занимает миллионы или даже миллиарды лет, и все это начинается с облака межзвездного газа.

Каждая звезда на небе начинала свою жизнь как туманность, которая представляет собой облако газа и пыли. Эти туманности в основном состоят из водорода и гелия, а также некоторых других микроэлементов. Со временем облако начнет вращаться, развивая центр тяжести и притягивая все в туманности к этой точке. Гравитация продолжает расти и усиливаться до тех пор, пока в решающий момент давление не приведет к коллапсу ядра молекул водорода и гелия в процессе, называемом ядерным синтезом.

Звезды, которые начинают формироваться, но не имеют достаточного тепла и давления, чтобы вызвать ядерное деление, известны как коричневые карлики. Их масса примерно вдвое больше массы Юпитера, но с Земли они видны только в инфракрасные телескопы.

Как только происходит слияние, рождается звезда — но что происходит после этого?

Жизненный цикл звезды

Прежде чем мы перейдем к тому, что происходит с каждым типом звезды в течение ее жизни, необходимо коснуться одного важного момента. Существует прямая связь между массой звезды и ее долголетием.

Массивные звезды могут иметь больше водорода, но они прожигают его быстрее, чем более мелкие, чтобы поддерживать свои большие размеры. Маленькие звезды не должны гореть так ярко, поэтому они живут дольше.

Это все относительно, так как средняя продолжительность жизни звезды исчисляется миллиардами лет. Нашей родной звезде 4,603 миллиарда лет, и, вероятно, у нее достаточно водорода, чтобы гореть еще 5 миллиардов лет. Как это отношение массы к продолжительности жизни влияет на различные типы звезд?

Звезды O- и B-класса

Звезды O — и B-класса являются одними из самых больших, которые вы увидите в ночном небе. Вы можете разбить их продолжительность жизни на пять этапов.

Первая стадия происходит сразу после первого слияния, которое дает рождение этому новому небесному телу. И гелий, и водород существуют внутри звезды, но в настоящий момент она только сжигает водород. На этом этапе он известен как звезда главной последовательности, и это, вероятно, самая стабильная часть его жизненного цикла.

Как только водород заканчивается, звезда переходит во вторую стадию. На протяжении миллионов или миллиардов лет ядро теряет стабильность. Хотя гелий горюч, звезда его не сжигает. Вместо этого, эта нестабильность заставляет гелий сливаться с углеродом, который смешивается с такими элементами, как железо, сера и неон. В этот момент ядро также превращается в железо, в то время как внешняя гелиевая оболочка звезды начинает расширяться.

Читайте также:  Диктант здравствуй весна ярко светит весеннее солнце

Третья стадия длится около миллиона лет и включает серию ядерных реакций, которые образуют больше оболочек вокруг железного ядра звезды.

Четвертая стадия — это самое взрывоопасное время в жизненном цикле звезды. В какой-то момент ядро обрушится само на себя и создаст массивную ударную волну, называемую сверхновой. То, что останется от звезды, будет расширяться во всех направлениях, уничтожая все, что находится на ее пути.

С этой точки зрения есть два различных способа, которыми звезда с большой массой может войти в пятую стадию. Если оставшийся материал в 1,5-3 раза больше нашего Солнца, он снова схлопнется и превратится в нейтронную звезду. Если он больше этого, то, что осталось от звезды, вместо этого станет черной дырой.

Звезды К- и М-класса

Звезды с низкой массой необязательно маленькие. Используя наше Солнце для сравнения размеров, большинство звезд с низкой массой составляют примерно 1,4 солнечных единицы — или 1,4 раза больше нашего Солнца. Хотя они могут быть больше, они значительно легче по весу, чем звезды класса G, такие, как наше Солнце.

Начало жизни звезды с малой массой похоже на жизнь с высокой и средней массой: она образуется из пылевого облака, инициирует ядерный синтез и горит как часть главной последовательности в течение миллиардов лет. Как только у этих звезд истощается водород, ядро ​​начинает разрушаться, становясь более горячим и плотным с течением миллионов лет. В конце концов, это ядро ​​достигнет температуры примерно 100 миллионов градусов Кельвина, где молекулы гелия начинают сливаться с углеродом. Внешность звезды темнеет до красного, становясь красным гигантом по мере расширения.

Как это происходит, происходит гелиевая вспышка. Это заставляет внешнюю часть звезды расширяться и слегка охлаждает ядро. Она проходит через этот цикл несколько раз, нагреваясь и охлаждаясь, когда внешняя оболочка расширяется и сжимается. Вот тут-то и начинается самое интересное.

Вместо того чтобы взорваться как звезда с высокой массой, она в конце концов теряет сцепление, так как гравитация больше не может сдерживать внешние слои. Она становится так называемой планетарной туманностью.

Как только это произойдет, все, что осталось, — это ядро ​​звезды, которая продолжает гореть как белый карлик. Когда у него кончается топливо, оно в конечном итоге темнеет до черного карлика.

Звезды G-класса

Мы все хорошо знакомы со звездами G-класса — наше солнце — одна из них. Сейчас это главная звезда последовательности, в середине своего жизненного цикла. Она стабильна, кроме случайной вспышки Солнца или выброса корональной массы, и обеспечивает нашу планету теплом и светом, которые ей необходимы, чтобы выжить.

Судьба звезды средней массы, подобной нашему солнцу, похожа на судьбу звезд низкой массы. Он начнет расширяться в красного гиганта — и, вероятно, поглотит нашу планету, а затем в конечном итоге превратится в планетарную туманность, оставив позади белого карлика.

Конец жизни на Земле

Хотя наше Солнце уже немолодо, с астрономической точки зрения, вам не нужно беспокоиться о том, что оно станет красным гигантом во время вашей жизни или жизни ваших детей. Мы, вероятно, получим еще 5 миллиардов лет жизни. К тому времени мы, вероятно, сами окажемся среди звезд, и наша родная планета превратится в далекое воспоминание.

Источник

Adblock
detector