Как сохранить солнечную энергию? Часть 1
Разведанных запасов энерготоплива при современном темпе роста потребления энергии должно хватить примерно от 70 до 130 лет. Но имеется вариант перехода на другие источники, такие как солнечная энергия. Но, даже если на Земном шаре будут открыты неисчерпаемые ресурсы энергосырья, экологической беды не получится избежать. Через 100 лет на Земле будет столько вырабатываться энергии, что может произойти экологическая катастрофа. Это приведет к таянию полярных льдов, из-за чего очень сильно увеличится уровень Мирового океана. В этом случае, странам и городам, которые находятся на побережье океана, солнечная энергия просто-напросто не понадобится, их смоет или затопит.
Именно поэтому нужно начать пользоваться солнечной энергией, которая совершенно не зависит от того, пользуется или не пользуется ею человек. Солнечная энергия нагревает атмосферу земного шара. Для того чтобы по максимуму использовалась ее, ее необходимо превратить в какой-нибудь другой вид. Сохранить световые лучи еще абсолютно ни у кого не получалось. Самым распространенным и перспективным способом преобразования света является фотоэлектрический. Фотоны свою энергию передают электронам в полупроводниках, и благодаря этому появляется электрический ток.
Как все это происходит можно подробно прочитать в учебнике по физике. Мы это коротко поясним. Запрещенные энергозоны в отдельных полупроводниках по ширине равны размеру энергии кванта света. Что такое запрещенная зона? Если говорить коротко, то это так называемый потенциальный барьер, который нужно пройти электрону при прыжке с одного на другой атом в кристаллической решетке. После того как поглотится фотон, электрон становится подвижным, а значит, возникает электрический ток. Электрический ток — это направленное движение электрозарядов.
Но вот незадача, фотоиндуцированные электроны могут двигаться в обе стороны. ЭДС различных знаков могут компенсировать друг друга. При таком раскладе тока не будет.
Если же совместить 2 полупроводника (часто пользуются кремнием), легированных различными примесями (первая, в силу несовместимых валентностей, привносит в начальное вещество нескомпенсированные электроны – это получается полупроводник типа- n, а вторая, чья валентность немного меньше, приводит к образованию дырок, носителей «+» зарядов — получается полупроводник типа -р), на границе полупроводников создается n-р-переход.
Еще совсем недавно фотоэлектроэнергия стоила весьма дорого. До 1982 г. в нашем государстве фотоэлементы производились для космических целей. В наше время появилось опытное изготовление дисковых солнечных элементов для хозяйственных целей. Солнечная энергия уменьшилась в цене в 3-4 раза. Но, при любых раскладах, 7-10 рублей за 1 Ватт — это очень дорого. В данное время идет поиск способов, при которых бы солнечная энергия стоила немного дешевле и была доступна для всеобщего пользования. Имеется одна интересная разработка нашего ученого А. Степанова. Он выдвинул неплохое суждение не выращивать высококачественный кремний в виде больших слитков, которые потом нужно пилить на круглые пластинки, а те, потом тщательно полировать, при этом затрачивая большое количество энергии и впустую расходуя материал. Он предложил вытягивать весьма тоненькими ленточками из расплава. При этом варианте уменьшается стоимость фотоэлементов и возрастает эффект от солнечных батарей, так как можно ленты смыкать очень плотно, а между дисковыми элементами остается неиспользованная пространство.
Солнечная энергия — это камень преткновения для всех ученых, так как КПД кремниевых элементов очень маленький. Так как лишь маленькая часть этой энергии в полупроводниках поглощается электронами, большая часть падающего излучения идет для нагрева фотоэлемента (это снижает его фотоэлектрические характеристики), часть их отражается, а какая-то пробивает его насквозь.
Напомним, в полупроводнике запрещенная полоса очень узкая, а соответственно и небольшое «энергетическое меню» электронов. Также, большие потери энергии связаны с рекомбинацией дырок и электронов.
В итоге коэффициент полезного действия солнечных элементов не будет превышать 10%. Но уже имеются опытные образцы, которые были получены в лабораториях А. Зайцевой, М. Кагана, КПД которых равняются 15-17%. И это еще не максимальный предел. Экспертами было рассчитано, что предел КПД солнечных элементов с n-р-переходом может достигать 27-30%.
В особенности перспективными являются полупроводниковые преобразователи с гетера-переходами. Они сделаны из 2-х разных по химсоставу полупроводников. Именно поэтому они отличаются шириной запрещенных зон, она у них разная. В так называемой области n-р-перехода появляется, за счет сглаживания потенциальных барьеров, добавочная фото ЭДС. Ученые, работающие под наставлением академика Ж. Алферова, получили на фотодиодах с гетеропереходом «арсенид галлия — арсенид алюминия», КПД примерно равно 20%.
Примечательно, что нагреваясь, данные фотодиоды не теряют фотоэлектрические свойства. Они хорошо работают, даже если уплотнить поток солнечной энергии в 1600 раз.
Оказалось, что появилась возможность сделать фотопреобразующее устройство, которое будет утилизировать весь свет, падающий на него. Он обладает варизонной структурой, другими словами запрещенная зона у него переменной ширины. Добиться этого можно путем введения в различные зоны полупроводника разные примеси. В этом случае добавочная фото-ЭДС генерируется в целой пространственной зоне, для различных точек которой — различные запрещенные зоны. В такой зоне для абсолютно любого кванта отыщется укромное местечко, где он без помех поглотится электроном.
Теория вариозиных структур в России разрабатывается группой ученых, и благодаря этому, фотопреобразователи будут иметь коэффициент полезного действия 90%.
Также, в наше время высоких технологий идет поиск новых и более дешевых материалов, из которых буду производиться фотоэлементы. Очень перспективны, по мнению многих ученых, полупроводниковые соединения серы, кадмия, меди. Преобразователи, которые получаются на их основе, самые дешевые, ну вот опять же беда — КПД у них где-то 5%, и материалы не очень стабильны, под воздействием окружающей среды разрушаются. Сложная и дорогая герметизация сводит на нет ранее полученную экономию.
В следующей части этого повествования мы вам расскажем о накопителях энергии, какие виды их существуют и как они работают.
Источник
Как хранить энергию. Расплавленная соль, сжатый воздух и супермаховик
Электроэнергетика — одна из немногих областей, в которой нет масштабного хранения произведенной «продукции». Промышленное хранение энергии и производство различного рода накопителей — следующий шаг в большой электроэнергетике. Сейчас эта задача стоит особенно остро — вместе со стремительным развитием возобновляемых источников энергии. Несмотря на бесспорные достоинства ВИЭ, остается один важный вопрос, который необходимо решить, прежде чем массово внедрять и применять альтернативные энергоносители. Хотя энергия ветра и солнца является экологически чистой, ее выработка имеет «прерывистый» характер и требуется хранение энергии для последующего использования. Для многих стран особенно актуальной задачей было бы получение технологий сезонного хранения энергии — из-за больших колебаний в ее потреблении. Издание Ars Technica подготовило список лучших технологий хранения энергии, мы расскажем о некоторых из них.
Гидроаккумуляторы
Самая старая, отлаженная и распространенная технология хранения энергии в больших объемах. Принцип работы гидроаккумулятора следующий такой: имеется два резервуара для воды — один расположен над другим. Когда спрос на электроэнергию невелик, энергия использутеся для закачки воды в верхний резервуар. В пиковые часы потребления электричества вода сливается вниз, на установленный там гидрогенератор, вода крутит турбину и вырабатывает электричество.
В будущем Германия планирует использовать старые угольные шахты для создания гидроаккумуляторов, а немецкие исследователи работают над созданием гигантских бетонных сфер для гидронегерации, размещенных на дне океана. В России есть Загорская ГАЭС, расположенная на реке Кунье у поселка Богородское в Сергиево-Посадском районе Московской области. Загорская ГАЭС — важный инфраструктурный элемент энергосистемы центра, участвует в автоматическом регулировании частоты и перетоков мощности, а также покрывая суточные пиковые нагрузки.
Как рассказал Игорь Ряпин, начальник департамента Ассоциации «Сообщества потребителей энергии» в рамках конференции «Новая энергетика»: Internet of Energy, организованной Энергетическим центром бизнес-школы «Сколково», установленная мощность всех гидроаккумуляторов в мире — порядка 140 ГВт, к преимуществам этой технологии относятся большое количество циклов и длительный срок работы, эффективность порядка 75-85%. Однако для установки гидроаккумуляторов требуются особые географические условия и она является дорогостоящей.
Накопители энергии сжатого воздуха
Этот способ хранения энергии по принципу работы похож на гидрогенерацию — однако вместо воды в резервуары нагнетается воздух. При помощи двигателя (электрического или иного) воздух закачивается в накопитель. Для получения энергии сжатый воздух выпускается и вращает турбину.
Недостаток такого рода накопителей — низкий КПД из-за того, что часть энергии при сжатии газа переходит в тепловую форму. Эффективность не более 55%, для рационального использования накопитель требует много дешевой электроэнергии, поэтому на данный момент технология используется преимущественно в экспериментальных целях, общая установленная мощность в мире не превышает 400 МВт.
Расплавленная соль для хранения солнечной энергии
Расплавленная соль удерживает тепло в течение длительного времени, поэтому ее размещают на солнечных тепловых установках, где сотни гелиостатов ( больших сконценирированных на солнце зеркал) собирают тепло солнечного света и нагревают жидкость внутри — в виде расплавленной соли. Затем она направляется в резервуар, далее посредством парогенератора приводит во вращение турбину, так вырабатывается электроэнергия. Одним из плюсов является то, что расплавленная соль функционирует при высокой температуре — более 500 градусов по Цельсию, что способствует эффективной работе паровой турбины.
Эта технология помогает продлевать рабочее время, либо обогревать помещения и давать электричество в вечернее время.
Подобные технологии используются в солнечном парке имени Мохаммеда ибн Рашида Аль Мактума — самая крупной в мире сети солнечных электростанций, объединенных в едином пространстве в Дубаи.
Проточные редокс-системы
Проточные батареи представляют собой огромный контейнер с электролитом, который пропускается через мембрану и создает электрический заряд. Электролитом может служить ванадий, а также растворы цинка, хлора или соленая вода. Они надежны, просты в эксплуатации, у них долгий срок службы.
Пока нет коммерческих проектов, общая установленная мощность — 320 МВт, в основном в рамках исследовательских проектов. Главный плюс — пока единственная технология на батареях с длительной выдачей энергии — более 4 часов. Среди недостатков — громоздкость и отсутствие технологии утилизации, что является общей проблемой для всех батарей.
Немецкая электростанция EWE планирует построить в Германии крупнейшую в мире проточную батарею на 700 МВт/ч в пещерах, где раньше хранили природный газ, сообщает Clean Technica.
Традиционные аккумуляторы
Это батареи, подобные тем, что работают в ноутбуках и смартфонах, только промышленного размера. Tesla поставляет такие батареи для ветряных и солнечных станций, а компания Daimler использует для этого старые автомобильные аккумуляторы.
Термальные хранилища
Современный дом необходимо охлаждать — особенно в регионах с жарким климатом. Термальные хранилища позволяют в течение ночи заморозить хранящуюся к цистернах воду, днем лед тает и охлаждает дом, без использования привычного всем дорогостоящего кондиционера и лишних расходов электроэнергии.
Калифорнийская компания «Ice Energy» разработала несколько подобных проектов. Их идея заключается в том, что лед производится только во время непиковой нагрузки на электросети, а затем, вместо расхода дополнительной электроэнергии, используется лед для охлаждения помещений.
«Ice Energy» сотрудничает с австралийскими фирмами, которые собираются внедрять технологию «ледяного аккумулятора« на рынке. В Австарлии из-за активного солнца развито использование солнечных батарей. Сочетание солнца и льда увеличит общую энергоэффективность и экологичность домов.
Маховик
Супермаховик — это инерционный накопитель. Запасенную в нем кинетическую энергию движения можно преобразовать в электричество с помощью динамо-машины. Когда возникает потребность в электричестве, конструкция вырабатывает электрическую энергию за счет замедления маховика.
Источник
Сайт о нанотехнологиях #1 в России
Для использования солнечной энергии ее обычно превращают в электричество при помощи фотоэлементов, либо используют для нагрева воды, которая может вращать турбину при кипении или обогревать дома. Но есть и еще одна возможность. Молекулы некоторых химических веществ под воздействием солнечного света меняют свою конфигурацию и переходят в более энергетически-высокое состояние, таким образом запасая в себе тепло. Когда потом они возвращаются в основное состояние – тепло выделяется. Таким образом можно создавать тепловые аккумуляторы наподобие электрических – их можно постепенно заряжать, а потом использовать накопившуюся энергию.
Об этом методе, называемом термохимическим, впервые заговорили еще несколько десятилетий назад. Одним из основных его достоинств является эффективность хранения: запасенная энергия может храниться в течении нескольких лет почти без утечек, при этом вещество, содержащее энергию, не требует изоляции – тепло начнет выделяться только в присутствии катализатора. До сих пор применение этой технологии сдерживала дороговизна необходимых материалов. Возможно, благодаря новым открытиям ученных из MIT их удастся существенно удешевить.
Идея метода родилась в 1970-х годах, но первое и пока единственное вещество, способное эффективно и надежно запасать энергию солнца в виде тепла, фульвален-тетракарбонилдирутений (fulvalene diruthenium) было обнаружено лишь в 1996-ом году. Но оно содержит редкий и дорогой химический элемент рутений, и, в добавок, до сих пор еще никто не понимал как оно работает.
Команда исследователей из MIT при помощи теоретических, вычислительных и экспериментальных методов смогла понять принцип работы этого редкого по своим свойствам вещества. Благодаря этому они надеются найти и более дешевые аналоги, не содержащие рутений.
Оказалось, что причиной всему – необычный энергетический профиль данного вещества. Между стабильными состояниями с низкой и высокой энергий (о которых знали и раньше), было обнаружено полустабильное состояние с промежуточным значением энергии, что оказалось неожиданным для ученых. Именно оно помогло объяснить почему вещество так стабильно, процесс накопления тепла легко обратим, а вещества не содержащие рутений – не работают, ведь у них такого промежуточного состояния нет. Теперь исследователи будут искать другие – более дешевые и распространенные вещества с похожими свойствами.
Источник