Возможно ли услышать звуки в космосе?
Из слогана научно-фантастического фильма ужасов «Чужой» все давно знают: «В космосе никто не слышит, как ты кричишь». Это правда, но только до определенного момента. Разбираемся, возможно ли услышать звуки в космосе.
Есть ли звук в космосе?
Звук распространяется волнами, подобно свету и теплу. Но, в отличие от них, звук движется, приводя в колебание молекулы. Таким образом, для того, чтобы звук имел способность путешествовать, необходимо наличие молекул, через которые он мог бы проходить. На Земле звук распространяется вибрирующими молекулами воздуха. Но на больших пустых участках между звездами и планетами, молекул нет, поэтому звука в космосе не существует.
Но с помощью специальных инструментов шум космоса можно услышать
Различные зонды, предназначенные для проведения исследований, способны захватывать радиоизлучения космических объектов. Эти радиоизлучения затем преобразуются в звуковые волны, и мы можем услышать голос космоса.
NASA записало звуки планет
С 2012 года NASA проводит миссию Van Allen Probes. На датчиках зонда Ван Аллена расположены специально разработанные инструменты, чувствительные как к электрическим, так и к магнитным волнам. Удалось установить, что все планеты звучат по-разному. Магнитосфера Юпитера — мощное магнитное поле, которое простирается на тысячи километров вокруг планеты — отдаленно напоминает шум замерзших озер. А атмосфера луны Сатурна, Титана, похожа на белый шум, исходящий из телевизора.
Где слушать звуки космоса?
НАСА составило плейлист из звуков планет, послушать его можно здесь.
Зачем NASA собирает звуки космоса?
В НАСА записывают звуки космоса не ради того, чтобы слушать их зимними вечерами, а в первую очередь потому, что они помогают понять динамическую космическую среду, в которой мы живем. Электромагнитные волны сталкиваются с электронами вокруг Земли. Некоторые из этих освобожденных электронов могут представлять опасность для космических аппаратов или телекоммуникаций: техника может быть повреждена их мощным излучением. Ученым необходимо знать о такой вероятности для того, чтобы успеть что-либо предпринять.
Источник
Как НАСА записывает звук, если звук не распространяется в космосе?
НАСА зарегистрировало волны магнитного и электрического поля, связанные с космическими событиями, и перевело эти данные в слышимый человеком диапазон.
Есть бесчисленные вопросы о космосе, которые преследовали ученых на протяжении веков. Чтобы ответить на некоторые из них, мы послали орбитальные аппараты, космические корабли, а иногда даже людей, чтобы собрать образцы и сделать наблюдения, но как вы изучаете то, что не видите?
Люди, естественно, способны слышать и видеть только в определенных конкретных частотах и длинах волн. Однако в космосе множество волн, которые находятся за пределами нашего узкого восприятия, так как же мы их изучаем?
Мы переводим, переделываем и адаптируем их в соответствии с нашими потребностями, чтобы мы могли наблюдать и анализировать их. Науку просто невозможно остановить!
Почему звук не может путешествовать в космосе?
Звуковые волны — это не что иное, как колебания воздуха. Когда эти вибрации находятся в диапазоне от 20 Гц до 20 кГц, мы можем их услышать!
Звуковые волны в основном распространяются путем вибрации частиц в среде, т. е. молекул воздуха. Эти колебания передаются последовательным частицам в среде, что означает, что звуковые волны не могут перемещаться без среды. Причина, по которой мы не можем слышать звук в пространстве, обычно связана с отсутствием такой среды.
Мы можем утверждать, что в космосе есть облака газов, которые могут действовать как среды, но газы не присутствуют равномерно по всему пространству. Кроме того, газы обычно менее плотны в космосе, что означает, что между частицами слишком большие расстояния, поэтому вибрации не могут эффективно распространяться.
Проще говоря, звук не может путешествовать в космосе.
Как ученые слышат звуки Вселенной?
Начнем с того, что ученые фактически не могут «слышать» космические звуки, но у них есть средства для изучения космических волн, преобразуя их в звуковые волны.
«Сонификация» — это преобразование любых не слуховых данных в звук и аналогично визуализации данных.
Метод преобразования называется Сонификации, если он соответствует определенным критериям:
- Воспроизводимость, т. е. Важные элементы данных остаются неизменными, независимо от условий, при которых проводится Сонификация.
- Данные должны обрабатываться ультразвуком таким образом, чтобы их могли различить даже неподготовленные слушатели.
Космос полно радиоволн, плазменных волн, магнитных волн, гравитационных волн и ударных волн, которые могут путешествовать в космосе без среды. Эти волны регистрируются приборами, которые могут воспринимать эти волны, и данные передаются на наземные станции, где волны кодируются звуком.
Любой слышимый звук имеет такие переменные, как частота, амплитуда и ритм. Различные пространственные волны согласуются с различными свойствами звука (частотой, амплитудой и т. д.) в разных пропорциях, чтобы получить звук.
НАСА имеет прибор под названием EMFISIS (Electrical and Magnetic Field Instrument Suite and Integrated Science), подключенный к двум спутникам Van Allen Probes, зондовый космический аппарат, который измеряет магнитные и электрические помехи, когда они окружают Землю. Есть три электрических датчика, которые измеряют электрические возмущения и три магнетрона, которые измеряют колебания в магнитных полях. Некоторые из электромагнитных волн лежат в диапазоне слышимых частот, который служит для ученых основой для перевода оставшихся записанных частот в слышимый диапазон для интерпретации данных. Эти знания о волнах и их тонах помогают нам понять схему, которой они следуют. Кроме того, это только волны, которые находятся вблизи атмосферы Земли.
Хотя научное сообщество уже давно бурлит вопросами, связанными с Солнцем и его недрами, мы также знаем, что ни один спутник или космический аппарат не может долететь до Солнца, не сгорев. Научное наблюдение за солнцем также практически невозможно из-за его яркости. Это оставляет нам возможность наблюдать полевые волны, которые окружают солнце, и естественные вибрации, которые возникают от солнца.
Поверхность солнца является конвективной из-за звуковых волн очень низкой амплитуды. НАСА создало солнечные звуки из данных, собранных в течение 40 дней с помощью гелиосферной обсерватории (SOHO) Michelson Doppler Imager (MDI). Эти данные были обработаны следующим образом:
- Данные о допплеровской скорости, полученные из MDI (доплеровского тепловизора Майкельсона), были усреднены по солнечному диску Солнца.
- Обработка проводилась таким образом, чтобы устранить эффекты движения космического аппарата и паразитные шумы.
- Затем был использован фильтр для выбора чистых звуковых волн.
- Наконец, данные были интерполированы, так что все недостающие места были покрыты.
- Затем данные были масштабированы для соответствия диапазону слышимых частот.
Это всего лишь один метод, принятый учеными для изучения звуков космоса. Есть также датчики, которые измеряют электрическую активность пыли, когда комета проходит мимо космического корабля!
«Гигантские прыжки» — это мелодия, составленная НАСА, которая описывает объем научной активности, связанной с Луной. Каждый звук в музыке существует благодаря данным, которые мы получили. Чем выше шаг в данном разделе, тем больше научных публикаций за этот период.
Да, и космические волны далеки от того, что вы обычно слышите в кино. Не ждите грохота и свиста. Космические волны больше похожи на сирены и свистки!
Насколько полезны звуки космоса?
Десятки космических звуков прошли через процесс сонификации. Слуховая система человека уникальна в том смысле, что она может идентифицировать паттерны, поэтому мы распознаем, является ли определенный тон повторяющимся или нет. Эта возможность была использована учеными для разделения и идентификации данных.
Если вы посмотрите на набор данных и расшифруете его, было бы более разумно, если бы вы могли его услышать, а не анализировать экран всплесков или диаграмму. Вот почему Сонификация стала популярным методом анализа космических явлений.
Роберт Александр, специалист по ультразвуковой обработке в Исследовательской группе по солнечной и гелиосферной среде в Университете Мичигана, во время изучения солнечных данных услышал гул, частота которого соответствовала периоду вращения Солнца. Этот звук подразумевал, что он, вероятно, будет периодическим. Это помогло ему сделать вывод, что существуют как быстрые, так и медленные солнечные ветры, которые периодически обрушиваются на землю.
Это только один пример; сонификация также показала, что юпитерианская молния существует. Это помогло исследовать ударные волны, которые формируются, когда магнитное поле планеты препятствует солнечному ветру, и многое другое!
Ученые превратили эти звуки в музыку, применив цифровые технологии.
Эта практика сонификации была использована для инновационного сотрудничества между Европейской южной обсерваторией (ESO) стипендиатом Крисом Харрисоном и слабовидящим астрономом Университета Портсмута доктором Николасом Бонном. Доктор Бонн создал мюзикл, в котором он дал осязаемые формы звездам и черным дырам. Он и его команда переосмыслили звезды, связав громкость звука с яркостью звезды, тон с цветом звезды и так далее.
Это шоу было в основном попыткой открыть чудесный космический мир для аудитории, которая может иметь проблемы со зрением, учитывая, что астрономия в значительной степени связана со зрением и наблюдением.
Наука всегда была многомерной, и человеческое любопытство привело к некоторым поистине удивительным открытиям. Изучение пространства посредством сонификации — это один из таких прорывов, который дал нам силы и позволил заглянуть в глубины космоса, даже несмотря на то, что нам не хватает способности «смотреть» на вселенную.
Источник
Пение вселенной: от «органа» большого взрыва до «сабвуфера» черной дыры
Со школьной скамьи мы знаем, что космос нем, так как воздуха там практически нет, а соответственно, звуковые волны там распространяться не могут. Кроме того, общеизвестно, что практически все космические объекты являются источниками электромагнитных волн (рентгеновских волн, гама-излучения, видимого света, инфракрасного излучения, ультрафиолета, радиоволн). Не редко частоты волн, генерируемых небесными телами, находятся в пределах слышимого спектра.
К сожалению, наши уши не могут воспринимать электромагнитные волны, но, если преобразовать их в звук, мы услышим нечто необычное, порой пугающее, и по моему субъективному мнению, завораживающее. Эти звуки с легкой руки журналистов были названы музыкой планет, звёзд, черных дыр. Большинство из них — свидетельства явлений галактического и вселенского масштаба.
«Пение» звёзд и планет принимает самые разнообразные формы: от многочастотных шумов до своеобразных ритмичных композиций. Всё это очень близко к аналоговой электронной музыке, например, экспериментальные композиции группы Bad Sector. Некоторые «голоса» небесных тел, например, Юпитера, очень напомнили мне звуки синтезатора АНС, который активно использовали Артемьев и Шнитке. В этом посте я опишу наиболее впечатлившие меня звуки окружающей нас, совсем не безмолвной вселенной, расскажу кое-что о том, как они появились и как были обнаружены.
«Органный» рокот юной вселенной
Первым звуком нашей вселенной принято считать так называемое звуковое послесвечение большого взрыва. Это волны, дошедшие до нас через 13 миллиардов лет. Через 380 000 лет после большого взрыва появилось свечение газов, открытое в 60-е годы прошлого столетия и названное «космическое микроволновое фоновое излучение»(КМФИ) или «реликтовое излучение».
По словам доктора астрономии, профессора Марка Вайттла (Mark Whittle) из университета Вирджинии, карта КМФИ, отражающая состояние вселенной в младенческом возрасте, является «отпечатком первородного крика новорождённого космоса». Как подчеркивает ученый, изменения цвета на спутниковой карте свечения говорят об изменении температуры, а те в свою очередь свидетельствуют об изменении плотности и давления в облаке газов. Волны давления – это по сути и есть звуковые волны.
Астрономы сравнивают КМФИ с космическим органом, в котором колоссальные потоки газов и энергии двигались по «трубам» из черной материи.
Дошедшие до нас, эти волны звучат так:
Космические метрономы и drum`n`base
Одним из интереснейших космических явлений являются звуки пульсаров, которые можно сравнить с метрономами и драм-машинами. Согласно принятых в астрофизике и астрономии представлений, пульсары – это вращающиеся нейтронные звёзды, которые образуются после взрыва массивных звёзд. Пульсары обладают магнитным полем, наклонённым к оси их вращения. В связи с этой особенностью, излучение, приходящее на землю, модулируется. Из полюсов пульсара исходит 2 потока излучения. От скорости вращения зависит частота ритма, создаваемая этими потоками.
В качестве примеров привожу ритмы пульсаров млечного пути:
Рёв солнечного колокола
Звуки нашего Солнца едва ли соответствуют представлениям земных обывателей о «тёплом, добром» солнышке. Низкочастотный гул, ревущие, булькающие и гудящие «импровизации» светила появляются в результате процесса конвекции, когда газы поднимаются и опускаются на поверхности звезды, создавая таким образом волны давления.
По утверждению Алекса Филиппенко, астронома из калифорнийского университета, наше Солнце создаёт 10 миллионов тонов единовременно. Количество тонов солнечной «симфонии», обнаруживается благодаря солнечным спутникам (STEREO, SOHO и др.), которые замеряют число выпуклостей от волн давления на поверхности звезды.
Звуки Солнца, записанные NASA:
«Пение» солнечных бурь
Не менее интересным явлением, на мой взгляд, являются магнитные (солнечные) бури. Звук, преобразованный и записанный во время этих явлений, не однороден. Мощные потоки мегаионизированных частиц плазмы порождают нетипичные для других явлений волны (звуки), которые фиксируются солнечными спутниками.
В качестве примера такого явления можно привести бурю, которая обрушилась на планеты солнечной системы в марте 2012-го года:
Леденящий кровь хор Юпитера
В результате влияния солнечного ветра, внутри магнитного поля Юпитера, генерируются волны, которые впервые записал аппарат NASA Вояджер-1, который 5 марта 1979 года достиг Юпитера.
Аналогичные звуки были записаны в текущем году аппаратом Juno 4, который 3 июля 2016-го года вошёл в магнитное поле крупнейшей планеты солнечной системы.
Многие из тех, кто сталкивался со звуками этой планеты, говорят о том, что их они пугают. Как я уже отмечал в начале статьи, мне необычные звуки Юпитера напомнили звучание советского аналогового синтезатора АНС и фрагменты некоторых произведений Шнитке, написанных на нём.
Вселенский рекорд «сабвуфера» черной дыры в галактике Персей А
На расстоянии 250 миллионов световых лет от Земли находится скопление из нескольких тысяч галактик, названное «скоплением Персея». В центре скопления расположена галактика «Персей А» с огромной черной дырой, которая является активным галактическим ядром. Галактическое ядро периодически выбрасывает в окружающее пространство колоссальное количество энергии. Такие энергетические «импульсы» черной дыры по сути представляют собой волны давления.
Волны Персея были обнаружены космическим телескопом «Чандра», который засёк рентгеновское излучение и смог определить его источник в 2003-м году. Фактически, если попытаться воспроизвести ноту, которая соответствует частоте волнам Персея, то мы её не услышим, так как она находится далеко за пределами нашего восприятия. Частота, на которой звучит нота – одно колебание в 10 млн лет. По расчетам ученых из NASA и американского планетарного общества – эта нота на 57 октав ниже ноты «до» первой октавы фортепьяно, т.е. в миллиарды раз ниже частоты, которую способен воспринимать человек. Сабвуфер Персея издаёт самый низкий звук во вселенной из всех известных человеку.
Полагаю, что тем, кому интересны звуки космоса, будут полезны эти ссылки:
Источник