Меню

Какие периодические кометы вы знаете каковы примерные их расстояния от солнца

Кометы

Вид на активные струи в необычной комете Хартли 2

Кометы – небольшие небесные тела, вращающиеся вокруг Солнца: описание и характеристика с фото, 10 интересных фактов о кометах, список объектов, названия.

В прошлом люди смотрели на прибытие комет с ужасом и боязнью, так как считали, что это предзнаменование смерти, катастроф или божьей кары. Китайские ученые веками собирали данные, отслеживая периодичность прибытия объектов и их траекторию. Эти летописи стали ценными ресурсами для современных астрономов.

Пролет кометы Макнот над водами Тихого Океана

Сегодня мы знаем, что кометы выступают остаточным материалом и малыми телами от формирования Солнечной системы 4.6 млрд. лет назад. Они представлены льдом, на котором находится темная корочка органического материала. Из-за этого получили прозвище «грязные снежки». Это ценные объекты для изучения ранней системы. Также они могли стать источником воды и органических соединений – необходимые жизненные компоненты.

В 1951 году Джерард Койпер предположил, что за чертой орбитального пути Нептуна скрывается дискообразный пояс с популяцией темных комет. Эти ледяные объекты периодически выталкиваются на орбиты и становятся короткопериодическими кометами. Тратят на орбиту меньше 200 лет. Сложнее наблюдать за кометами с длинными периодами, длительность орбитального пути которых превышает два века. Такие объекты проживают на территории облака Оорта (на удаленности в 100000 а.е.). На один облет могут потратить до 30 млн. лет.

Комета Галлея в 1986 году

В каждой комете есть замороженная часть – ядро, которое в протяжности не превышает нескольких километров. Состоит из ледяных осколков, замерзших газов и пылевых частиц. С приближением к Солнцу комета нагревается и формирует кому. Нагрев приводит к тому, что лед сублимируется в газ, поэтому кома расширяется. Иногда она способна охватывать сотни тысяч км. Солнечный ветер и давление могут устранять пыль и газ комы, что приводит к длинному и яркому хвосту. Обычно их два – пылевой и газовый. Ниже представлен список самых известных комет Солнечной системы. Перейдите по ссылке, чтобы изучить описание, характеристику и фото малых тел.

Список наиболее известных комет

Название Открыта Первооткрыватель Большая полуось Период обращения
ISON 21 сентября 2012 года Виталий Невский, Артём Олегович Новичонок, Обсерватория ISON-Кисловодск ? ?
2Р/Энке 1786 года Пьер Мешен 2.22 а. е. 3,3 г
D/1993 F2 (Шумейкеров — Леви) 24 марта 1993 года Юджин и Каролина Шумейкеры, Дэвид Леви 6.86 а. е. 17,99 г
9P/Темпеля 3 апреля 1867 года Эрнст Темпель 3.13 а. е. 5,52 г
19P/Борелли 28 декабря 1904 года А. Борелли 3.61 а. е. 6,85 г
C/1995 O1 (Хейла-Боппа) 23 июля 1995 А. Хейл, Т. Бопп 185 а. е. 2534 г
81P/Вильда 6 января 1978 Пауль Вильд 3.45 а. е. 6,42 г
67P/Чурюмова-Герасименко 20 сентября 1969 года Чурюмов, Герасименко 3.51 а. е. 6,568 г
C/2013 A1 (Сайдинг-Спринг) 3 января 2013 года Роберт Макнот, обсерватория Сайдинг-Спринг ? 400000 г
21P/Джакобини—Циннера 20 декабря 1900 года Мишель Джакобини, Эрнст Циннер 3.527 а. е. 6,623 г
C/1861 G1 (Тэтчер) 5 апреля 1861 года А.Е. Тэтчер 55,6 а. е. 415,0 г
109P/Свифта-Туттля 16 июля 1862 года Льюис Свифт, Туттль, Хорас Парнелл 26.316943 а. е. 135,0 г
55P/Темпеля-Туттля 19 декабря 1865 года Эрнст Темпель и Хорас Туттль 10.337486 а. е. 33,2г
Галлея 1758 год Наблюдалась в глубокой древности; 2,66795 млрд км 75,3 г
С/2013 US10 (Каталина) 31 октября 2013 года Обсерватория Catalina Sky Survey ? ?
C/2011 L4 (PANSTARRS) 6 июня 2011 года Телескоп Pan-STARRS ? ?

Большая часть комет движется на безопасной отдаленности от Солнца (комета Галлея не подходит ближе 89 млн. км). Но некоторые врезаются прямо в звезду или так сближаются, что испаряются.

Наименование комет

Название кометы может быть сложным. Чаще всего их называют в честь первооткрывателей – человек или космический корабль. Это правило появилось только в 20-м веке. К примеру, комета Шумейкера-Леви 9 названа в честь Юджина и Кэролин Шумейкер и Дэвида Леви. Обязательно прочитайте интересные факты о кометах и информацию, которую нужно знать.

Источник

Характеристика орбит комет

Кометы движутся по вытянутым траекториям. Орбита комет характеризуется параметрами, которые описывают размер орбиты, ее положение относительно Солнца: перигелийным расстоянием q (минимальным расстоянием от Солнца) и эксцентриситетом е (степенью вытянутости орбиты), периодом обращения кометы Р, большой полуосью орбиты а. Орбита кометы может лежать не в плоскости эклиптики. Поэтому орбита кометы может характеризоваться углом наклона плоскости орбиты кометы i к плоскости эклиптики.

Типы хвостов комет

Хорошо заметны белый пылевой и синий плазменный хвосты кометы.

Типы хвостов комет исследовал русский астроном Ф. А. Бредихин. В конце XIX века от разделил хвосты комет на три типа:

· I тип хвостов комет прямой и направлен в сторону от Солнца по радиусу вектору.

· II тип хвостов широкий, изогнутый.

· III тип хвостов направлен вдоль орбиты кометы. Такие хвосты неширокие.

Довольно редко встречаются кометы, хвосты которых направлены к Солнцу. Это так называемые аномальные хвосты.

Под воздействием солнечного ветра пылевые частицы отбрасываются в направлении, противоположном Солнцу, формируя пылевой хвост кометы. Пылевой хвост кометы имеет обычно желтоватый цвет и светится отражённым от Солнца светом.

Плазменный хвост кометы обычно голубоватого цвета. Плазменный хвост кометы образуется из газа, который электризуется под действием ультрафиолетового излучения Солнца – плазмы.

Строение кометы

У каждой кометы несколько различных составных частей:

  • Ядро: относительно твердое и стабильное, состоящее в основном изо льда и газа с небольшими добавками пыли и других твердых веществ.
  • Голова (кома): светящаяся газовая оболочка, возникающая под действием электромагнитного и корпускулярного излучения Солнца. Плотное облако водяного пара, углекислого и других нейтральных газов сублимирующих из ядра.
  • Пылевой хвост: состоит из очень мелких частиц пыли уносимых от ядра потоком газа. Эта часть кометы лучше всего видна невооруженным глазом.
  • Плазменный (ионный) хвост: состоит из плазмы (ионизованных газов), интенсивно взаимодействует с солнечным ветром.

Строение комет, особенности хвостов комет лучше иллюстрировать на моделях «Кометы» и «Кометы: строение».

IV. Выполнение заданий по карточкам (дифференцированная форма контроля, на первом месте № варианта, на втором — сложность)

Источник

КОМЕТЫ

Кометы — это наиболее необычные по своему виду небесные объекты, которые иногда доступны для наблюдений невооруженным глазом. Они привлекали внимание человека с глубокой древности. Вместе с астероидами и метеорными телами их относят к малым телам Солнечной системы. Характерной особенностью комет является то, что при сближении с Солнцем у них появляется и увеличивается хвост, направленный всегда в сторону от Солнца. Однако подробнее об этом ниже, а пока дадим небольшую историческую справку о том, как развивались представления о кометах.

1. Немного об истории изучения комет

В то время, как абсолютное большинство видимых небесных светил были точечными объектами и почти никогда не изменяли своего расположения на ночном небе (звезды), а если и двигались, то по заданному пути и за определенное время («блуждающие звезды» или планеты), неожиданное появление «хвостатых светил» вызывало у людей чувство страха. В период отсутствия научных знаний любые непонятные явления природы чаще всего истолковывалось как магические или божественные знаки — предвестники грядущих событий. «Хвостатые светила» или кометы на эту роль вполне подходили. Слово «комета» в переводе с греческого языка означает «волосатая звезда». В древней Греции, а затем и в средние века кометы обычно изображали как отрубленные головы с развевающимися волосами. Человеческая история в древности была весьма насыщена разными трагическими событиями, такими как войны, эпидемии, дворцовые перевороты, убийства правителей или других вельмож. Каким-то из этих событий сопутствовали появления ярких комет. А придворные астрономы-астрологи, а затем и церковь в предсказаниях будущего основывались на небесных явлениях, «увязывая» дела земные и небесные. Например, из трудов римских историков известно, что смерть Юлия Цезаря в 44 г. до н. э. совпала с возникновением на небе яркой кометы, поэтому до средних веков и даже позднее при королевских дворах в Европе было распространено мнение, что появление кометы может предвещать смерть королей или их наследников. Приведем пример средневековой эмоциональной «интерпретации» природы комет и их влияния на судьбы людей. Известный французский хирург Амбруаз Паре так описывал комету 1528 г.: «Эта комета была столь ужасна и страшна и порождала в народе столь великое смятение, что некоторые умирали от одного лишь страха, а другие заболевали. Она представляла собой светило громадной длины и кровавого цвета; в вершине ее была видна сжатая рука, держащая длинный меч, как бы готовый разить. У конца его клинка были видны три звезды. По обе стороны лучей, выходящих из хвоста этой кометы, виднелось множество топоров, ножей, мечей, обагренных кровью, а среди них были видны ужасные человеческие лица с всклоченными бородами и дыбом стоящими волосами». Описания появлений разных комет на протяжении всей истории человечества до XVII в. изобиловали самыми страшными предсказаниями и прогнозами, вплоть конца света. Самое первое зафиксированное в исторических летописях появление кометы относится 2296 г. до н. э. Тогда комета наблюдалась китайскими астрономами, которые старательно следили за ее движением по созвездиям. В представлении древних китайцев небо было огромной страной, состоящей из многочисленных областей и провинций, в которых яркие планеты были их правителями. Для передачи императорских указов во все провинции были необходимы курьеры. Роль курьеров отводилась как раз «хвостатым светилам», поскольку они быстро перемещались через многие созвездия и якобы передавали императорскую волю. Подтверждением этого китайские астрономы считали перемещение по воле императора «планет-правителей» из одного созвездия в другое после исчезновения кометы. Интересно отметить, что такую положительную роль кометам приписывали только в Китае. Может быть потому, что на заре цивилизации люди еще не были «обременены» знанием всех перипетий человеческой истории.

Достаточно объективные суждения о природе комет высказывали еще некоторые древнегреческие и римские мыслители, которые считали их независимыми от человека и его деятельности природными явлениями. Однако ближе всего к их истинной природе подошел в своих рассуждениях римский философ Сенека, живший в I веке н. э., который в споре с Аристотелем (считавшего кометы исключительно атмосферными явлениями) писал: «Я не могу согласиться, что комета — это только зажженный огонь, это, скорее, одно из вечных творений природы. Комета имеет собственное место между небесными телами. она описывает свой путь и не гаснет, а только удаляется. Не будем удивляться, что законы движения комет еще не разгаданы; придет время, когда упорный труд откроет нам скрытую сейчас правду. » Это время пришло только через пятнадцать столетий. Сначала Тихо Браге и его ученики при наблюдении из разных точек земной поверхности кометы 1577 г. доказали, что она находилась не в атмосфере Земли, а далеко за ее пределами, то есть была самостоятельным небесным телом. Затем Галилео Галилей в 1610 г. впервые воспользовался построенным им телескопом для наблюдений небесных тел и совершил при этом множество астрономических открытий. Несколько раньше вышел труд «Шесть книг о круговых движениях небесных светил Николая Коперника из Торуна» (в 1543 г.), нанесший сокрушительный удар по геоцентрической системе мира Аристотеля-Птолемея. Таким образом была подготовлена «почва» для поиска общих законов движения небесных тел. Эти законы были установлены в период 1609-1618 гг. опытным путем (на основе подбора математических соотношений, а не их вывода) талантливым учеником Тихо Браге Иоганном Кеплером, воспользовавшегося многочисленными наблюдательными данными своего учителя о движениях планет. В результате формулировки Кеплером его трех законов было установлено, что каждая планета движется не по окружности с постоянной скоростью, а с переменной скоростью по эллипсу, в одном из фокусов которого находится Солнце. Но общая причина движений планет была еще непонятна. И только с открытием Иссаком Ньютоном закона всемирного тяготения этому было найдено научное объяснение: если сила, действующая на небесное тело со стороны Солнца обратно пропорциональна квадрату расстояния до него, то такое тело должно двигаться по эллиптической орбите. Именно расчеты, произведенные Ньютоном по такой формуле (еще до формулировки закона всемирного тяготения) по просьбе английского астронома Эдмунда Галлея доказали, что яркая комета 1682 г. движется по эллиптической орбите. На основе собственных наблюдений этой кометы и анализа достоверных исторических летописей о наблюдениях ярких комет за последние 300 лет Галлей составил первый каталог о 24 таких телах, включавший рассчитанные им элементы кометных орбит (основные параметры, по которым можно определить положение каждой кометы в любой момент времени). В своем каталоге Галлею удалось обнаружить очень близкое совпадение орбитальных элементов трех комет, появлявшихся в 1531, 1607 и 1682 гг., откуда он сразу сделал вывод о том, что это должна быть одна и та же комета. Ее период обращения вокруг Солнца оказался равным 75,5 годам и, как предположил ученый, следующее появление кометы должно было произойти в 1758 г. Это предсказание Эдмунда Галлея подтвердилось в начале 1759 г. Вместе с появлением кометы подтвердился и закон всемирного тяготения, на основе которого выполнялись расчеты ее траектории. К сожалению сам астроном не дожил до этого момента. Однако открытую им периодическую комету стали называть кометой Галлея. Так начинались научные исследования комет.

2. Кометные орбиты и орбитальная классификация комет

Согласно теории Ньютона, движения небесных тел, подчиняющихся закону всемирного тяготения, совершаются не только по эллипсам (это лишь один из частных случаев), а по так называемым коническим сечениям, к которым принадлежат окружность, эллипс, парабола и гипербола. Поясним это на следующем упрощенном примере. Если считать комету материальной точкой с малой массой (m) по сравнению с массой Солнца (M) и не учитывать влияние планет на ее траекторию движения, то уравнение движения такой точечной массы в поле тяготения Солнца получается из следующих законов: всемирного тяготения, сохранения общей механической энергии (E) и сохранения момента количества движения (M). Это задача «двух тел», имеющая достаточно простое аналитическое решение в отличие от задачи трех и более гравитационно связанных тел, когда такое решение найти не удается. В случае двух тел решение получается как уравнение траектории движения точечной массы. В полярной системе координат (r и j ) оно имеет следующий вид:

r = p/(1 + e* cosj ), (1)

где r — радиус-вектор, соединяющий точечную массу с центром Солнца,

p = M 2 / G* m 2* M 2 — параметр орбиты, (2)

e = К 2 (1 + 2E* M 2 /G 2* m* M 2 ) — эксцентриситет орбиты. (3)

Из формулы (1) вытекают все три закона Кеплера. Но, как уже говорилось, законы Кеплера характеризуют движение небесного тела по эллипсу в поле тяготения центрального тела, находящегося в одном из фокусов этого эллипса. Формула (1) описывает кроме эллиптической траектории еще три типа траекторий. Как видно из формулы (3), все они получаются при разных значениях величины E, определяющей значение эсцентриситета:

если E = 0, то e = 1 и формула (1) превращается в уравнение параболы;

если E 0, то е > 1 и (1) становится уравнением гиперболы;

если E = — G 2* m 3* M 2 /2* M 2 , то e = 0

и (1) становится уравнением окружности.

Эти типы траекторий называются коническими сечениями по следующей простой причине Возможны только четыре варианта сечения кругового конуса плоскостью: перпендикулярно его оси, под некоторым углом к ней, параллельно образующей линии конуса и. параллельно оси конуса (Рис. 1). При этом в сечении, соответственно, получаются окружность, эллипс, парабола и гипербола, что было известно еще геометрам Древней Греции. Не случайно слова «эллипс», «парабола» и «гипербола» имеют греческое происхождение.

Таблица 1. Характеристики орбит некоторых комет

Номер и Имя Семейство Орбитальный
период
(в годах)
Дата
прохождения
перигелия
(год-месяц-
число)
Перигелийное
расстояние
(в а. е.)
Большая
полуось
орбиты
(в а. е.)
Эксцентриситет
орбиты
Наклонение
орбиты
(в градусах)
1P Галлея Нептуна 76,1 1986-02-09 0,587 17,94 0,967 162,2
2P Энке Юпитера 3,3 2000-09-09 0,339 2,21 0,847 11,8
6P Д’ Арре Юпитера 6,51 2003-08-01 1,346 3,49 0,614 19,5
9P Темпеля-1 Юпитера 5,51 2005-07-07 1,497 3,12 0,519 10,5
19P Борелли Юпитера 6,80 2001-09-14 1,365 3,59 0,623 30,3
21P Джакобини-
Циннера
Юпитера 6,52 1998-11-21 0,996 3,52 0,706 31,8
27P Кроммелина Урана 27,89 1984-09-01 0,743 9,20 0,919 29,0
46P Виртанена Юпитера 5,46 2013-10-21 1,063 3,12 0,652 11,7
55P Темпеля-
Тутля
Урана 32,92 1998-02-28 0,982 10,33 0,906 162,5
73P Швассмана-
Вахмана-3
Юпитера 5,35 2006-06-02 0,933 3,06 0,695 11,4
75P Когоутека Юпитера 6,24 1973-12-28 1,571 3,4 0,537 5,4
81P Вилда-2 Юпитера 6,39 2003-09-25 1,583 3,44 0,540 3,2
95P Хирон 50,7 1996-02-14 8,46 13,7 0,38 7
Хейла-Боппа
(обнаружена
в июле 1995г.)
4000 1997-03-31 0,914 250 0,995 89,4
Хиакутаке
(обнаружена в
январе 1996 г.)
ок. 40000 1996-05-01 0,230 ок. 1165 0,9998 124,9

В отличие от планет и абсолютного большинства астероидов, движущихся по стабильным эллиптическим траекториям и поэтому вполне предсказуемых при своих появлениях (для надежного расчета орбиты каждого из этих тел достаточно измерить его координаты всего в трех точках траектории движения), с кометами дело обстоит намного сложнее. На основе накопленных наблюдательных данных установлено, что абсолютное большинство комет также обращается вокруг Солнца по вытянутым эллиптическим орбитам. Но на самом деле, ни одна комета, пересекающая планетные орбиты, не может двигаться по идеальным коническим сечениям, поскольку гравитационные воздействия планет постоянно искажают ее «правильную» траекторию (по которой она бы двигалась в поле тяготения одного Солнца. Реальный путь кометы в межпланетном пространстве извилист и методы небесной механики (науки о движении небесных тел) позволяют вычислить только среднюю орбиту, которая совпадает с истинной не во всех точках. Кометы делят на два основных класса в зависимости от периода их обращения вокруг Солнца. Короткопериодическими называют кометы с периодами обращения менее 200 лет, а долгопериодическими — с периодами более 200 лет. Совсем недавно можно было наблюдать яркую долгопериодическую (с периодом около 4000 лет) комету Хейла-Боппа, которая впервые появилась в ближних окрестностях Солнца. Название кометы состоит из фамилий ученых, обнаруживших ее в июле 1995 г. (см. табл. 1 и рис. 3). Сейчас уже обнаружено около 700 долгопериодических комет, из которых примерно 30 имеют маленькие перигелийные расстояния и называются «царапающими» Солнце кометами. Примерно шестая часть всех известных долгопериодических комет — «новые», то есть они наблюдались только в течение одного сближения с Солнцем. Очевидно, что их расчетная орбита получается незамкнутой (параболической), поэтому их еще называют параболическими. «Старые» долгопериодические кометы раньше наблюдались в зоне планет земной группы и о них уже кое-что известно. Наклоны орбит долгопериодических комет по отношению к плоскости эклиптики распределены случайным образом. Короткопериодических комет сейчас известно более 200. Как правило, их орбиты расположены очень близко к плоскости эклиптики. Все короткопериодические кометы являются членами разных кометно-планетных семейств. Самое большое такое семейство принадлежит Юпитеру, — это кометы (их известно около 150), у которых афелийные расстояния (от Солнца до точки наибольшего удаления) близки к большой полуоси орбиты Юпитера равной 5,2 а.е. Периоды обращения вокруг Солнца комет семейства Юпитера заключены в пределах 3,3 — 20 лет (из них наиболее часто наблюдаемые — Энке, Темпеля-2, Понса — Виннеке, Фая и др.). У других крупных планет семейства комет существенно меньше: сейчас известно около 20 комет семейства Сатурна (Тутля, Неуймина-1, Ван Бисбрука, Гейла и др. с периодами обращения вокруг Солнца в 10-20 лет), всего несколько комет семейства Урана (Кроммелина, Темпеля-Тутля и др. с периодами обращения 28-40 лет) и около 10 — семейства Нептуна (Галлея, Ольберса, Понса-Брукса и др. с периодами обращения 58-120 лет). Считается, что все эти короткопериодические кометы вначале были долгопериодическими, но в результате длительного гравитационного влияния на них больших планет они постепенно перешли на орбиты, связанные с соответствующими планетами и стали членами их кометных семейств. Было показано, что преобладание по численности комет семейства Юпитера является следствием его значительно большего гравитационного влияния на эти тела по сравнению с другими планетами (в 10 раз превышающего влияние Сатурна и в 100 и более раз — гравитационное воздействие любой другой планеты). Из всех известных короткопериодических комет самый маленький период обращения вокруг Солнца у кометы Энке, входящей в семейство Юпитера, — 3,3 земных года. Эта комета наблюдалась максимальное количество раз при сближениях с Солнцем: 57 раз в течение примерно 190 лет. Но все же наиболее известной в истории человечества является комета Галлея, входящая в семейство Нептуна. Имеются записи о ее наблюдениях начиная с 467 г. до н. э. За это время она проходила вблизи Солнца 32 раза, учитывая, что период ее обращения вокруг Солнца равен 76,08 годам.

В разделе «Астероиды» говорилось о том, что уже обнаружено достаточно большое количество малых планет, сближающихся с Землей (около 750). По некоторым оценкам общее количество таких тел с размером более 1 км может достигать 1500-2000, а более 100 м — около 135000. Более мелких тел может быть еще больше. Подобно астероидам, сближающимся с Землей, в последнее время обнаружены так называемые мини-кометы, которые, вероятно, также принадлежат к этому семейству тел. По каким именно траекториям они могут двигаться, пока неизвестно, но их орбиты, вероятно, должны быть похожими на орбиты метеорных и болидных потоков (Леонид, Персеид, Акварид, Драконид и других, известных как потоки «падающих звезд») пересекающихся с земной орбитой в разное время года. Ведь абсолютное большинство метеорных потоков, как уже установлено, образовалось при распаде кометных ядер. Пока что с помощью наземных телескопических наблюдений и снимков с космического аппарата «Полар» в земной атмосфере на высоте нескольких километров обнаружены вспышки, вызванные падением небольших (около 10 м в диаметре) объектов предположительно ледяного состава.

3. Что нам известно о природе кометных оболочек

Что же представляют собой кометы как разновидность малых тел Солнечной системы? Пожалуй первую удачную попытку объяснения связанных с ними явлений предпринял немецкий математик и астроном Фридрих Бессель при наблюдениях им кометы Галлея в 1835 г. Им была создана механическая теория кометных оболочек. Конечно, она была упрощенной, но в ней развивалась правильная идея о том, что в голове кометы частички пыли движутся под действием притяжения к Солнцу и отталкивания от него. В конце XIX века русский астроном Ф.А. Бредихин развил теорию Бесселя и построил эмпирическую классификацию кометных хвостов (Рис. 2), хорошо описывающую поведение пылевой составляющей кометного вещества и не потерявшую своего значения даже сейчас. Ф.А. Бредихин ввел специальную относительную величину или параметр, который назовем условно h, показывающий во сколько раз солнечная сила отталкивания, действующая на частицы кометных хвостов (впоследствии было показано, что это отталкивание есть не что иное как световое давление), превышает силу тяготения. Бредихин рассчитал величину h для разных кометных хвостов и по значениям h провел их классификацию.

К хвостам I-го типа были отнесены прямолинейные узкие хвосты, почти не отклоняющиеся от направления Солнце-комета, в которых действуют очень большие ускорения. Для них величина h находится в пределах от нескольких десятков до нескольких тысяч единиц. Очертания таких хвостов часто бывают неправильными, а их внутренняя структура иногда струйчатая, винтовая или волнистая. Вдоль этих лучей могут перемещаться с большой скоростью сгустки кометной материи — облачные образования. К хвостам II-го типа были отнесены кометные хвосты, для которых величина h заключена между 0,6 11 -10 12 т. Массы кометных ядер в большинстве случаев определить пока не удается по причине их малости. Более или менее точно удалось оценить только массу ядра кометы Галлея по его гравитационному влиянию на космические аппараты «ВЕГА-1 и -2» (СССР) аппарат «Джотто» (Европейское космическое агентство), сближавшиеся с ним в марте 1986 г. В тот момент масса ядра кометы была близка к 6х10 11 т. Тогда были получены и другие чрезвычайно интересные результаты. Было обнаружено, что ядро кометы Галлея представляет собой ледяную глыбу, напоминающую по форме стоптанный башмак (Рис. 4). Размер этого тела вдоль большой оси был равен примерно 14 км, а вдоль двух малых осей — примерно по 7,5 км. Ядро кометы вращается вокруг малой оси, проходящей через «каблук», с периодом равным 53 ч. Температура поверхности кометы на ее расстоянии 0,8 а.е. от Солнца была примерно равна 360 К или 87° по Цельсию. Поверхность ядра кометы оказалась очень темной и отражает только 4% падающего на него света. Для сравнения напомним, что поверхность Луны в среднем отражает 7%, а поверхность Марса 16% падающего света. Скорее всего, ледяное тело кометы действительно покрыто теплоизолирующим слоем из тугоплавких частиц (металлов, серы, кремния, их окислов и других соединений) о существовании которого предполагал Уиппл в своей модели. Там где лед тает, струи водяного пара, углекислого и других газов вместе с пылью вырываются из-под корки (это можно видеть на снимке). Было подсчитано, что в момент прохождения перигелия комета за каждую секунду теряет около 45 т газообразных соединений и 5-8 т пыли. По оценкам запасов летучего вещества комете Галлея должно хватить на сотню тысяч лет. За это время она может еще совершить около 1300 оборотов вокруг Солнца, а затем, вероятно, пополнит число вымерших комет. Это бывшие ядра комет, которые уже не проявляют никаких признаков кометной активности и по наблюдаемым характеристикам ничем не отличаются от астероидов.

5. Насколько опасно для земных обитателей столкновение Земли с кометой?

При прохождении Земли через кометные хвосты не было замечено никаких, даже самых незначительных эффектов. Опасность для Земли могут представлять только кометные ядра. Подтверждением этому, скорее всего, служит падение Тунгусского метеорита 30 июня 1908 г. в безлюдном таежном районе Сибири. Одно из основных свидетельств в пользу кометного происхождения Тунгусского метеорита состоит в отсутствии каких-либо обломков упавшего тела, то есть собственно метеорита. Наиболее вероятно, что это тело состояло из замерзших летучих веществ и полностью испарилось при резком торможении и взрыве в земной атмосфере. Однако испарения, то есть мельчайшие капельки вещества, должны были все же попасть на земную поверхность вблизи места взрыва. Поэтому еще одним подтверждением кометной природы этого тела считается химический состав вещества, найденного на месте катастрофы. Он очень похож на тот, что был определен по спектрам метеоров Драконид в земной атмосфере. Сейчас установлено, что метеорный поток Драконид произошел при распаде кометы Джакобини-Циннера. Кроме того, ученые И.Т. Зоткин и Л. Кресак независимо друг от друга показали, что координаты радианта Тунгусского метеорита (того направления, откуда он двигался) совпадают с координатами радианта метеорного потока Таурид, связанного с кометой Энке. Проблема кометной опасности детально проанализирована в недавно опубликованной книге [1]. Мы только отметим, что наибольшую опасность представляют собой массивные долгопериодические кометы, хотя они и попадают в зону планет земной группы примерно в десять раз реже, чем короткопериодические. Их появление чаще всего бывает неожиданным из-за произвольной ориентации плоскостей орбит и больших или очень больших периодов обращения. Более того, многие из этих комет — апериодические, то есть движутся по незамкнутым траекториям (параболическим или гиперболическим) и поэтому действительно являются новыми. У этих комет возможна более высокая скорость столкновения с Землей — до 72 км/с (на встречных траекториях), что может привести к глобальным катастрофическим последствиям — вплоть до уничтожения всей человеческой цивилизации. Возможность подобных катастрофических событий подтверждается многими фактами. Во-первых, к настоящему времени на поверхности Земли обнаружено свыше 230 больших ударных кратеров. Конечно, большинство этих кратеров, скорее всего, были образованы при падении на земную поверхность каменистых тел, которые могут пронизывать земную атмосферу практически не разрушаясь. Вполне вероятно, что какая-то часть кратеров была образована и крупными кометными ядрами или телами промежуточного состава. Но столкновения с кометами могут приводить не только к катастрофическим последствиям. Ряд ученых считает, что сразу после своего формирования при высоких температурах и охлаждения земная поверхность была очень сухая (например, как сейчас лунная), и что практически вся вода и другие летучие соединения были доставлены потоком комет, обрушившимся в то время на Землю. Кстати, кометы могли доставить не только воду, но и сложные органические соединения, возникновение которых в земных условиях, как некоторые полагают, было маловероятным, и таким образом создали основу для зарождения простейших организмов. Хотя это пока и гипотезы, но кроме Тунгусского явления, есть и другие факты, подтверждающие падения ядер комет в прошлом на Землю. Например, одно из наиболее массовых вымираний флоры и фауны за последние 230 млн. лет произошло 65 млн. лет назад (между мезозойской и кайнозойской биологическими эрами или на рубеже мелового и третичного геологических периодов), когда исчезло около 2/3 всех живых организмов, включая динозавров. С этим же моментом в геологических отложениях земной поверхности связан слой с повышенным содержанием чрезвычайно редкого на Земле элемента иридия. Ученые Л. Альварес и С. Ванденберг показали, что содержание этого элемента в тот период на земной поверхности могло резко увеличиться в результате падения крупного кометного ядра (с поперечником около 10 км), имевшего повышенное содержание иридия. Был даже найден кратер с подходящим возрастом и соответствующими морфологическими особенностями, который мог возникнуть при таком событии. Этот кратер, по имени Чиксулуб, имеет диаметр 180 км и находится на полуострове Юкатан в Мексике. Но причиной вымирания живых организмов тогда могла быть не повышенная концентрация иридия, а сильнейший взрыв, вызванный столкновением кометного ядра с земной поверхностью, который привел к выбросу в атмосферу (в том числе в ее верхние слои) огромного количества пыли. Глобальное запыление атмосферы неизбежно приводит к резкому падению температуры ее нижних слоев (на 10 и более градусов), так как пыль экранирует поток солнечного излучения. Такое изменение средней температуры может сохраняться до 1 года — так называемый эффект «ядерной зимы» (он также неизбежен при массовом применении ядерного оружия, откуда и появилось соответствующее название). Вполне вероятно, что такой эффект, вызванный падением крупного кометного ядра (но это мог быть и астероид) на земную поверхность 65 млн. лет назад, и привел к катастрофической гибели живых организмов.

Еще одно подтверждение реальности столкновений кометных ядер с планетами — уникальное событие, которое произошло «на глазах» у всего современного человечества. Имеется ввиду падение фрагментов кометы Шумейкера-Леви 9 на Юпитер в июле 1994 г. Эта комета была обнаружена в окрестностях Юпитера в начале 1993 г. уже после того, как распалась на 20 фрагментов, которые распределились вдоль ее орбиты в виде светящегося «небесного ожерелья». Как показало моделирование движения этой кометы «назад», она была либо сорванным «с места» удаленным ледяным спутником Юпитера, либо ранее захваченной планетой-гигантом обычной кометой. Скорее всего, кометное ядро было разорвано на части приливными силами при близком прохождении к Юпитеру. Падение обломков ядра кометы с размерами от 1 до 10 км со скоростью около 60 км/с происходило с 16 по 22 июля 1994 г. на обратную сторону южного полушария Юпитера. Это не позволило непосредственно наблюдать эффекты столкновений. Но последствия падений становились наблюдаемыми на видимом полушарии Юпитера уже через 40-50 мин. по причине его быстрого вращения. Они были грандиозными. Следы взрывов в виде огромных темных пятен и расходящихся от них кольцевых ударных волн (по диаметру сравнимых с Землей) на фоне юпитерианской атмосферы наблюдались во всех обсерваториях мира. Но лучшие по качеству снимки были получены с помощью орбитального телескопа «Хаббл» (см. Рис. 5), работающего за пределами земной атмосферы.

Итак, в процессе многократных прохождений вблизи Солнца кометы либо истощаются и становятся похожими на астероиды, либо разрушаются и рассеиваются, превращаясь в метеорные потоки, либо сталкиваются с более крупными телами. Если число комет, гравитационно связанных с Солнцем, ограничено, то в результате быстрой эволюции кометного вещества, это число должно со временем уменьшаться. Но по наблюдательным данным количество вновь открываемых комет не уменьшается, а скорее наоборот. Конечно, это происходит отчасти потому, что возрастает количество наземных обсерваторий, увеличиваются наблюдательные возможности и даже просто становится больше людей, занимающихся поиском новых комет. Тем не менее, по оценкам ученых поток комет во внутренние области Солнечной системы не ослабевает. Поэтому, естественно предположить, что взамен исчезающих комет откуда-то постоянно «приходят» новые. Вопрос о происхождении комет — это наиболее интересный и сложный вопрос, который стоит перед учеными, занимающимися их изучением. Как и раньше, сейчас «не все ясно» как с короткопериодическими, так и с долгопериодическими кометами. Но примерно 40-50 лет назад казалось, что ответ на вопрос о происхождении комет уже получен. Ученики крупнейшего советского космогониста О.Ю. Шмидта, занимавшегося изучением происхождения Солнечной системы, Б.Ю. Левин и В.С. Сафронов в конце 40-х гг. показали, что в процессе роста планет-гигантов (в первую очередь Юпитера и Сатурна), при достижении ими достаточно большой массы их гравитационные возмущения становятся настолько сильными, что начинается массовый выброс ими более мелких первичных тел (планетезималей) из ближайших к их орбитам кольцевых зон. Практически все не вошедшие в планеты и находящиеся в этих зонах тела были выброшены. Полученный результат позволил понять, что процесс выброса планетезималей существенно повлиял на эволюцию не только пояса астероидов (см. раздел «Астероиды») и планет земной группы, но заодно мог создать на периферии Солнечной системы резервуар кометных тел, из которого они приходят сейчас. В 1950 г. голландский астрофизик Ян Оорт, проанализировав распределение орбит известных в то время 19 долгопериодических комет, обнаружил, что большие полуоси их первичных орбит группируются к области, удаленной на расстояния более 200000 а.е. Оорт предположил, что Солнечная система окружена гигантским облаком кометных тел или ледяных планетезималей (по его оценке насчитывающим до 10 11 тел), находящихся на расстояниях от 2х10 4 до 2х10 5 а.е. Если в 1950 г. Оорт исходил из предположения о том, что эти тела были «заброшены» на такие расстояния в результате взрыва гипотетической планеты (которая раньше якобы существовала на месте современного главного пояса астероидов), то уже в 1951 г. перешел к представлениям, совпадающим с выводами представителей шмидтовской школы. Обнаруженное им кометное облако в дальнейшем стали называть «облаком Оорта». (Однако следует подчеркнуть, что идеи о существовании связанного с Солнцем семейства комет высказывал еще в начале 70-х годов XIX в. Дж. Скиапарелли.) Итак, согласно гипотезе Оорта это облако является тем резервуаром комет, в котором они «хранятся» и из которого под действием гравитационных возмущений от сближающихся с Солнцем звезд или гигантских газо-пылевых облаков попадают во внутреннюю область нашей планетной системы как новые. Однако те же гравитационные возмущения должны вызывать и рассеяние этого облака со временем, поэтому вопрос о его стабильности в течение времени существования Солнечной системы пока не решен.

Новые кометы становятся долгопериодическими, если возмущения от планет-гигантов или других планет их не переводят в разряд короткопериодических. Но для последних были и специальные гипотезы о происхождении. Так называемую «эруптивную» гипотезу предложил в еще 1812 г. Ж.-Л. Лагранж. Он предполагал, что кометы рождаются при вулканических выбросах с планет-гигантов. В середине XX в. эта гипотеза была развита С.К. Всехсвятским, который «перенес» источник эруптивных выбросов комет с планет-гигантов на их крупные спутники, на которых была обнаружена вулканическая активность. Но эта гипотеза (впрочем, как и гипотеза Оорта) приходит в противоречие с наблюдательными данными о короткопериодических кометах. Как ранее отмечалось, орбиты этих комет расположены очень близко к плоскости эклиптики. Это обстоятельство свидетельствует о возможной общности их происхождения. В последнее время рядом ученых развивается гипотеза о том, что большинство короткопериодических комет появляется из реликтовых поясов ледяных планетезималей (так называемых поясов Казимирчак-Полонской), возникших при формировании Солнечной системы (в той же плоскости!) и сохранившихся между планетами-гигантами. Как показывают расчеты, между орбитами всех больших планет имеются весьма широкие кольцевые зоны, в которых такие пояса малых тел могут быть вполне устойчивыми. Минимальные расстояния между зонами сильных возмущений (сферами Хилла) соседних больших планет составляют: 4,0 а.е. (Юпитер-Сатурн), 9,2 а.е. (Сатурн-Уран) и 11,2 а.е. (Уран-Нептун). Все эти величины превышают аналогичное расстояние для пары Марс-Юпитер (3,2 а.е.), в пределах которого стабильно существует главный пояс астероидов (см. раздел «Астероиды»). Сильным аргументом в пользу существования таких поясов является и открытие «занептунного» пояса малых тел Койпера, предсказанного около 50 лет назад, в котором уже обнаружено более 70 наиболее крупных тел, имеющих размеры 100-500 км. Их орбиты простираются вплоть до 200 а.е. Пояс Койпера уже может рассматриваться как источник долгопериодических комет, приходящих в центральную область Солнечной системы в результате столкновений между телами этого пояса. С другой стороны, пока не ясно, почему обнаружено так мало кометных тел (кроме астероида-кометы Хирона это еще несколько объектов) на расстояниях, соответствующих предполагаемым поясам Казимирчак-Полонской. Остается надеяться, что дальнейшие исследования комет позволят ответить на эти вопросы.

СПИСОК ЛИТЕРАТУРЫ:

1. Угроза с неба: рок или случайность? (Под ред. А.А. Боярчука). М: «Космосинформ», 1999, 218 с.

Источник

Читайте также:  Буддийское солнце тату значение
Adblock
detector