Меню

Каким способом от солнца передается тепло

Почему в космосе холодно, если Солнце горячее?

Хоть Солнце и удалено на 150 миллионов км от нашей планеты, это не мешает ему дарить нам свое тепло ежедневно. Если даже на Земле температура доходит до +50°C и даже +60, зарегистрированных буквально в прошлом году в Кувейте, то что же происходит на более близком расстоянии к звезде? Но более интересно то, почему в космосе все равно холодно, если Солнце такое горячее? Об этом мы сегодня и поговорим.

Что такое тепло и температура

Для начала немного окунемся в матчасть, чтобы понять «откуда ноги растут». Первое, что нам нужно уяснить, это разница между словами «тепло» и «температура». Очень часто они используются как синонимы, но это не совсем правильно. Говоря простыми словами, тепло – это энергия. Она хранится как внутри Солнца, так и в нас с вами. А температура – измерение той самой энергии, способ вычислить, насколько теплый/холодный какой-нибудь объект или среда. Когда тепло покидает тело, его температура понижается.

«Выход» тепла из одного объекта и его переход в другой может осуществляться тремя способами: проводимостью, конвекцией и излучением. Проводимость характерна для твердых объектов. При нагревании более горячие частицы сталкиваются с более холодными и таким образом передают им тепло. Конвекция относится к газам и жидкостям. Вы наверняка знаете, что тепло не опускается, а поднимается. Именно поэтому в комнате под потолком всегда температура чуть выше, чем внизу. То же самое касается и поверхности воды, где заметно теплее, чем на дне. Это происходит благодаря конвекции. Молекулы жидкости или газа нагреваются и устремляются вверх. Там они вытесняют холодные молекулы, которые в свою очередь опускаются вниз.

Что такое тепло и температура

При излучении объект передает свое тепло в виде света. Возможно, для кого-то это станет открытием, но излучение характерно вообще для всего вокруг нас и для нас самих тоже. Люди также излучают тепло в форме инфракрасных волн. Увидеть это невооруженным глазом, конечно же, нельзя, но вот на тепловизоре – легко. Так работают различные приборы ночного видения и прочие инфракрасные камеры. Чем наблюдаемое тело горячее, тем больше тепла излучает и ярче светится на тепловизоре. Самым ярким примером (простите за каламбур) теплового излучения является наша звезда, которая отдает свое тепло всем планетам, вращающимся вокруг нее. Кому-то больше, кому-то меньше, но светит Солнце всем.

Если вы уловили все выше сказанное, то знайте, что мы уже близки к ответу на вопрос: «Почему в космосе холодно, если Солнце горячее?». Итак, для проводимости и конвекции необходимо определенное количество частиц, которые будут передавать тепло между собой, например, частицы воздуха в земной атмосфере. Но проблема космоса заключается в том, что там таких частиц крайне мало (и воздуха там нет, там вообще ничего нет, кроме вакуума), поэтому там эти два способа теплопередачи неэффективны от слова совсем.

Что же тогда остается? Правильно, излучение. Оно движется от Солнца и попадает на какой-либо объект, который начинает его поглощать. На Земле в этом случае сработала бы проводимость или конвекция, так как здесь есть достаточное для этого количество частиц материи, в нашем случае – воздуха. Но в космосе это не сработает, потому что в вакууме не хватает той самой материи, которая могла бы поглотить солнечное тепло и передать его другим объектам. Поэтому в космосе и холодно.

Почему в космосе холодно

Почему в тени так холодно

Как вам известно, в тени всегда прохладнее. Особенно сильно это заметно ночью, когда даже в летний период может быть достаточно холодно. Теперь вы знаете, что это объясняется отсутствием солнечного излучения в этой части планеты. Это полушарие просто повернуто в другую сторону – одно из доказательств того, что Земля круглая. Но сейчас не об этом.

Если в пределах нашей планеты во тьме температура падает на несколько градусов, то в космосе эта разница просто колоссальна. Вспомните тот же Меркурий, который невероятно горячий с одной стороны и дико холодный с другой. Но давайте для более наглядного примера возьмем что-нибудь поближе, например, Луну. Сторона нашего спутника, повернутая к Солнцу, нагревается до +127 градусов по Цельсию. В это время обратная сторона мерзнет при -173. Почему же такой же эффект не наблюдается на Земле? Все из-за атмосферы. Именно она равномерно распределяет солнечное излучение, обеспечивая нам постепенное снижение и увеличение температуры, а не резкое. Если бы Земля не вращалась вокруг своей оси, температура на темном полушарии постепенно продолжила бы падать, а на светлом – повышаться.

Еще один известный пример – солнечный зонд Parker, который был отправлен изучать наше светило. Он использовал теплозащитный экран, чтобы не сгореть от солнечного излучения. И температура этого экрана повышалась до 120 градусов, а вот сам зонд, который за ним прятался, промерзал до -150.

Источник

Тепло от Солнца

Тысячи измерений солнечных пульсаций позволили советским астрономам А. Б. Северному, В. А. Котову и Т. Т. Цапу сделать вывод об отсутствии у Солнца плотного ядра. А если у звезды нет ядра, то нет условий и для термоядерных процессов (см. так же статью «Химические реакции«). Из этого следует, что наше светило сжимается и расширяется со скоростью около 2 метров в секунду с периодом 160 минут. Установленно, что тепловое излучение Солнца имеет такой же период, а температура при этом изменяется на 1° С. Подтверждением гипотезы «Солнце — звезда переменная» служит изменяющийся с периодом в 160 минут блеск планеты Уран. В Геттингенской обсерватории (ФРГ) с 1972 по 1978 год проделали 246 измерений радиуса Солнца, который оказался равным 695 265 километрам (с точностью 0,01 процента).

Читайте также:  Кто умудрился проглотить солнце

В бесконечности Вселенной и в конечном атоме объем вещества крайне мал. Можно представить космос некоторой подвижной ажурной конструкцией из островов звездно-планетных систем в объемном океане силовых полей.

Солнечное тепло на Земле

Миллиарды лет планета Земля и другие планеты обогреваются теплом Солнца. И хотя до земной поверхности доходит лишь одна двухмиллиардная часть излучаемого светилом тепла, на каждый квадратный сантиметр поверхности суши и океана приходится в минуту 9,23 джоуля. Такое отопление эквивалентно сжиганию за три дня всех земных запасов нефти, газа, угля и дров. Если бы Солнце состояло из лучшего угля, оно выгоре­ло бы за 20 тысяч лет. И неизвестно, что сгорает на Солнце. С 1925 года, когда было открыто превращение водорода в гелий, существует гипотеза: внутри Солнца ежесекундно 657 миллионов тонн водорода превращаются в 652,5 миллиона тонн гелия, а 4,5 миллиона тонн массы переходят в тепло. Но сегодня эту гипотезу принимают не все.

Сама Земля также представляет собой генератор тепла, По расчетам Е. А. Любимовой, земной запас тепла достигает 317*10 29 джоуля, примерно столько же планета потеряла за весь период своего существования.

На Солнце выявлено всего 72 элемента таблицы Д.И. Менделеева. На 1 000 000 атомов водорода там приходится 63 000 атомов гелия, кислорода 690, углерода 420, азота 87, кремния 45, магния 40, неона 37, железа 32, серы 16, кальция 2,2, никеля 1,9 и аргона 1. Бора, бериллия и лития на Солнце незначительное количество, что объясняется их выгоранием в ядерных реакциях.

Во Вселенной установилось устойчивое равновесие между энергиями магнитного поля, космических лучей и межзвездного газа. Галактическое магнитное поле, как в ловушке, удерживает космические лучи, и внутри Галактики потоки космических лучей идут на Землю со всех сторон. Солнце добавляет к этому излучению свою долю — солнечный ветер. Энергия всепроникающих космических лучей велика и, по мнению академика А. Б. Северного, порождается магнитными полями.

Источник

Способы передачи тепловой энергии

Передачу тепловой энергии называют теплопередачей. Есть три способа (рис. 1) передачи тепловой энергии:

С помощью теплопередачи можно изменять внутреннюю энергию тел.

Что такое теплопроводность

Теплопроводность — это передача (внутренней) тепловой энергии от одной части тела к другой его части.

Примечание: С помощью теплопроводности можно передавать тепловую энергию от одного тела к другому, если плотно прижать тела друг к другу.

При теплопроводности передается только энергия, а вещество не переносится.

Теплопроводности различных веществ отличаются. Металлы в твердом и жидком состоянии очень хорошо проводят тепло, то есть, обладают высокой теплопроводностью.

Примечание: Медь и серебро – это металлы с очень высокой теплопроводностью.

Но у остальных жидкостей теплопроводность меньше, чему твердых тел.

А у газов, например, у воздуха, теплопроводность очень мала. Поэтому пористые тела, содержащие большое количество газа, хорошо изолируют тепло.

Дом, построенный из пенобетона может иметь более тонкие стены, чем кирпичный дом.

В твердых телах тепло передается только с помощью теплопроводности.

Что такое конвекция и как она происходит

В жидкостях и газах тепло передается только с помощью конвекции. Конвекцио (лат.) – перенос.

Слои жидкости, или газа, имеющие различную температуру, могут самостоятельно перемешиваться. Этот процесс называется конвекцией.

Примечание: Конвекция — это самостоятельное перемешивание слоев жидкости, или газа, имеющих различную температуру.

Располагая руку в нескольких сантиметрах над горящей свечой, из-за конвекции мы можем ощущать тепло.

Как происходит конвекция: Более горячие слои жидкости, или газа, имеют маленькую плотность, поэтому поднимаются вверх, а их место занимают более холодные слои.

Примечание: Чтобы конвекция происходила хорошо, нужно нагревать жидкости и газы снизу.

— в чайнике нагревается вся вода, а не только находящаяся в нижней части чайника;

— воздух в помещении от пола до потолка прогревается батареями отопления, расположенными в нижней части помещения;

— дуют ветры, днем – с моря (дневной бриз), а по ночам – с суши на море (ночной бриз).

Что такое излучение

Излучение – это перенос тепловой энергии без помощи вещества. Поэтому в вакууме тепловая энергия переносится излучением.

Вакуум – это отсутствие молекул вещества в пространстве (глубокий вакуум в космосе), или, наличие небольшого количества молекул газа.

Например, в современных лабораториях можно из-под колокола откачать воздух до состояния, когда в одном кубометре пространства под колоколом будет содержаться всего несколько молекул воздуха.

Все тела могут излучать энергию. Сильно нагретые тела излучают больше энергии, чем более холодные.

Солнце – это большой раскаленный газовый шар, то есть, звезда. Солнце излучает тепло, это тепло через вакуум с помощью излучения переносится на Землю и нагревает ее поверхность и все тела, находящиеся на ней.

Читайте также:  Раскраска страна восходящего солнца

Известно, что черные предметы на солнце нагреваются очень быстро, а белые, почти не нагреваются.

По причине излучения более темные тела охлаждаются быстрее, чем белые.

В наши дни широкое распространение получили бытовые инфракрасные обогреватели. Эти обогреватели нагревают окружающие предметы с помощью теплового (инфракрасного) излучения.

Примечание: Теплопроводность и конвекция происходят в веществе. А излучение может переносить тепловую энергию без помощи вещества.

Источник

Каким образом лучи солнца нагревают атмосферу, если между телами «земля-солнце» вакуум?

Я немного уточню другие ответы. Речь тут о том, что лучи солнца, вообще говоря, это не только свет (т.е. видимая часть спектра), но и ультрафиолетовое излучение, и инфракрасное, а также радиоволновое, рентгеновское и электромагнитное — те самые магнитные бури, о которых предупреждают сердечников по телевизору.

Прямая передача тепла от более нагретого тела менее нагретому требует контакта. А вот излучению никакая среда не нужна — оно прекрасно путешествует сквозь вакуум. Долетев до Земли, энергичные фотоны (а любое излучение — это фотоны) сталкиваются с атомами и передают им часть своей энергии, которая переходит в тепло. Нагревается, в основном, сама планета, потому что она значительно более плотная, чем атмосфера, и вероятность столкновения фотона с атомом там выше. Затем тепло от земли передается в атмосферу как в виде конвективных потоков, так и переизлучением.

5 · Хороший ответ

Нет. Только электромагнитное.

Электронейтральные фотоны притягиваются сильным магнитом где-то за Землёй? Простите, но это глупости.

Фотоноы света проходят через вакум без сопротивления. Попадая в другую среду (Атмосфера) часть энергии идет на ее нагрев, но очень мало и неэффективно. Впоследсвии свет проходит атмосферу практически бесприпятсвенно, передает энергию и нагревает землю и все объекты, которые в свою очередь передаю энергию\тепло атмосфере.

3 · Хороший ответ

Таким образом, что солнечные лучи это фотоны, и они прекрасно летят через вакуум. А когда они долетают до Земли, то они её нагревают. Наоборот если в космосе практически нет вещества, то практически нечему энергию лучей поглощать.

Источник

Каким способом от солнца передается тепло

Зимнее отопление летним Солнцем

Начнём с немногих интересных цифр. Учёным удалось измерить, сколько калорий посылает Солнце, заливающее своим светом какую-нибудь определённую площадку. Если взять Москву, то каждый квадратный метр её площади получает от Солнца в три зимних месяца (ноябрь, декабрь, январь) 30 тыс. калорий, зато в весенние и летние месяцы — 500 тыс. калорий. Сколько квадратных метров занимает наша столица, столько раз по полмиллиона калорий даёт ей Солнце в течение тёплого периода года. Куда же девается всё это огромное количество теплоты? Большая часть его вновь теряется и рассеивается в те же самые сутки, когда теплота накопилась. Только очень незначительная часть прогревает почву на небольшую глубину, да и то не надолго: едва наступят первые осенние холода, накопленная в почве теплота снова рассеивается.

Короче сказать, щедрые дары дневного светила не сохраняются нами, а проносятся мимо нас. Нельзя ли этот огромный тепловой капитал, сам плывущий в наши руки, каким-нибудь способом удержать и сохранить впрок?

Над этой идеей размышлял в последние годы своей жизни выдающийся московский физик проф. В. А. Михельсон, скончавшийся в феврале 1927 г. Мысли его вылились в строгий и стройный план использования летнего солнечного тепла для зимнего отопления московских зданий и постепенного улучшения климата нашей столицы. Проект этот, тщательно разработанный покойным учёным, был напечатан в своё время в специальном «Журнале прикладной физики».

Михельсон исходил в своих расчётах из следующих данных. Московский дом, занимающий площадь в тысячу квадратных метров, получает от Солнца в течение семи месяцев (весной и летом) 500 000*1000 = 500 000 000 калорий. Для отоплен я же этого дома в продолжение пяти осенне-зимних месяцев нужно израсходовать 360 000 000 калорий.

«Следовательно,- заключает учёный,- Солнце вообще на каждое здание посылает количество тепла, с избытком покрывающее всю его потребность в зимнем отоплении. Задача заключается в том, как поглотить и сохранить эту солнечную теплоту с весны и лета до зимы, как предохранить её от бесполезного рассеяния».

Место, где по проекту Михельсона предлагается накоплять и сохранять солнечную теплоту, находится — где бы вы думали?- под землёй, на глубине 20 и более метров.

На первый взгляд кажется нелепым прятать дары солнечных лучей глубоко в подземелье. Однако дело представится не столь несообразным, если вспомним, как хорошо почва хранит теплоту. Почва — превосходный теплоизолятор; она очень медленно пропускает сквозь себя теплоту.

«Если нам удастся,- пишет Михельсон,- в течение лета прогреть солнечной теплотой мощный слой земли под городом на глубине между 20 и 30 м, то теплота эта к зиме распространится во все стороны в бока, вверх и вниз не более как на 10 м и не успеет даже дойти до земной поверхности».

Как же предполагал автор проекта накоплять впрок под землёй теплоту, посылаемую Солнцем?

Чтобы понять основную идею этого остроумного проекта, напомним два элементарных физических факта. Всем известно явление холода при испарении: испаряющаяся жидкость охлаждает окружающие предметы (вспомним холод в мокром платье), т. е. отнимает от них теплоту. Менее известно обратное явление: пары, сгущающиеся снова в жидкость, возвращают теплоту, нагревают окружающие предметы. Вода в форме пара в состоянии, сгущаясь, нагреть до 100° вшестеро большее по весу количество жидкой воды. Отметив ещё и другой факт,- что газ при сжатии нагревается,- обратимся снова к проекту Михельсона.

Читайте также:  Солнце самый массивный объект солнечной системы ок 90 всей массы

Весною и летом крыши наших домов залиты солнечными лучами и, конечно, нагреваются ими. Теплота эта утрачивается ночью при остывании крыши,- она излучается в окружающее пространство. Идея Михельсона состоит, как уже сказано, в том, чтобы не давать этой теплоте рассеиваться бесплодно, а сохранять её впрок и пользоваться ею зимой для отопления жилищ. Система труб на крышах домов должна непрерывно отводить нагреваемую в них Солнцем воду под землю на глубину 20-30 м ниже фундамента.

На такую глубину внешние температурные колебания не проникают — это слой постоянной температуры, равной в Москве +6° Ц. Циркулируя по проложенным в почве трупам, вода, нагревшаяся на крыше, будет отдавать почве избыток тепла, а остыв, вновь будет перекачана на крышу, чтобы, нагревшись, опять поступить под почву, и т. д. Короче, теплота, полученная летом от Солнца, будет запасаться в почвенных слоях под домом (рис. 89).


Рис. 89. Проект зимнего отопления домов теплотой летнего Солнца

Расскажем теперь, как можно будет воспользоваться накопленной теплотой подземной печки для зимнего отопления жилищ. Михельсон предлагает для этого такую установку. Сеть труб на крыше в зимнее время выключается. Тёплая подземная вода поступает в особый сосуд (испаритель) со змеевиком, в котором вследствие искусственного понижения давления испаряется какая-нибудь жидкость, например спирт. Пары спирта поглощают при своём образовании часть теплоты воды, окружающей змеевик. Затем действием особого насоса они перекачиваются в змеевик другого сосуда (сгустителя), где вследствие повышенного давления вновь сгущаются в жидкость, отдавая теплоту воде, которая окружает змеевик. Эта поступающая из почвы вода может быть благодаря указанному процессу нагрета до 55° (по расчётам Михельсона). Такая вода уже достаточно тепла для водяного отопления.

Конечно, необходим некоторый расход топлива (или электрической энергии), чтобы поддерживать циркуляцию — впрочем, очень медленную — воды по трубам от крыши в почву, а также для работы насоса при испарителе и сгустителе. Но расход этот весьма невелик. Расчёт показывает, что в установке Михельсона топливо используется в три раза выгоднее, чем в самой совершенной из существующих систем отопления. Другими словами, проект обещает экономию топлива в 60%. Если вспомним, что отопление жилищ составляет главную статью расхода топлива, поглощающую больше, чем вся промышленность, то значение подобной экономии станет в наших глазах ещё важнее.

Для осуществления всего этого потребуются капитальные подземные работы.

«Под городом,- пишет Михельсон,- придётся произвести значительные горные работы: заложить несколько шахт глубиною в 30 м, а затем на глубинах 20 и 30 м проложить двойную сеть горизонтальных штолен с трубами для циркуляции воды. Густота сети труб должна быть такова, чтобы в течение шести месяцев, с апреля по сентябрь, можно было сплошь прогреть солнечной теплотой слой материка в 20 или 30 м мощности. Какую толщу и до какой степени удастся прогреть, это будет зависеть главным образом от того, какую площадь солнечных поглотителей можно будет устроить на крышах города.

«Одни и те же трубы, наполненные водою, будут служить как для летнего прогревания почвы, так и для отопления города зимой. Летом подземная сеть труб через посредство насосов соединяется с сетью поглощательной, расположенной на крышах. Зимой подземная сеть соединяется с испарителями всех отопительных машин, которые повышают температуру до 55° и питают котлы водяного отопления. В тёмные месяцы (ноябрь-февраль) поглотители солнечной энергии выключаются. В ясные дни марта, когда отопление всё же нужно, можно совершенно исключить подземную сеть и питать испарители отопительных машин непосредственно подогретой водой, спускающейся с крыш».

Этим не исчерпывается всё то, что обещает дать проект Михельсона в случае осуществления. Можно рассчитать сеть труб на крышах так, чтобы приход тепла от Солнца за год был больше расхода его на отопление. Тогда к концу года будет всякий раз оставаться неизрасходованный запас теплоты. Этот запас с каждым годом будет расти, потому что к прежним остаткам будет прибавляться новый. Что же в результате всего этого получится?

«Средняя годовая температура почвы будет постепенно повышаться. Зимнее промерзание почвы очень скоро исчезнет. Через много лет это постепенное накопление тепла в почве может весьма заметно отразиться на климате города, и притом тем больше, чем больше площадь города. Снежный покров будет исчезать раньше и устанавливаться позднее, чем в окружающей области. Общее повышение температуры почвы, а, следовательно, и воздуха, уменьшит потребность в отоплении. Поэтому накопление тепла в почве и изменение городского климата будет идти ускоренным темпом. Тогда весь город будет как бы тёплым оазисом, перенесённым из более южных широт в северные».

Вы видите, что весь климат нашей столицы может в сравнительно короткий срок измениться до неузнаваемости — из засыпаемого снегом уголка Севера превратиться в ласкаемый тёплым воздухом благодатный край субтропического пояса.

Источник

Adblock
detector