Меню

Какими были первые звезды нашей вселенной

Какими были первые звезды нашей вселенной

Звезды образуются из диффузной космической материи, сгустившейся под действием сил гравитации. В общих чертах этот механизм был ясен еще Ньютону, что следует из датированного 1692 годом письма, адресованного филологу Ричарду Бентли. Разумеется, современная наука сильно обогатила ньютоновское объяснение. В начале прошлого века британский астрофизик Джеймс Джинс доказал, что газовое облако коллапсирует лишь в том случае, если его масса превышает определенный предел. Когда газ стягивается к центру облака, возрастает его давление и возникают звуковые волны, распространяющиеся к периферии. Если их скорость меньше скорости гравитационного стягивания газа, облако продолжает коллапсировать, увеличивая плотность вещества в центральной зоне. Поскольку скорость звука пропорциональна квадратному корню температуры, а темп гравитационного сжатия возрастает вместе с массой, газовое облако коллапсирует тем легче, чем оно холоднее и тяжелее.

В космологии есть четыре основные шкалы расстояний, основанные на яркости объектов (Luminosity Distance, DL), угловых размерах (Angular Diameter Distance, DA), времени прохождения света (Light Travel Time Distance, DT), а также сопутствующая шкала (Comoving Distance, DC). Для расстояний менее 2 млрд св. лет эти шкалы совпадают.

DL В расширяющейся Вселенной далекие галактики выглядят гораздо более тусклыми, чем в стационарной, потому что фотоны испытывают красное смещение и «размазываются» по большему пространству.
DA Галактики на самом краю видимой Вселенной выглядят так же, как 13 млрд лет назад. Но когда свет от них начал свой путь к нам, они были не только моложе, но и гораздо ближе. Поэтому далекие галактики выглядят значительно более крупными, чем можно было бы ожидать.
DC Сопутствующая шкала расширяется вместе с нашей Вселенной. Она указывает, где находятся далекие объекты в данный момент (а мы видим Вселенную более молодой).
DT Эта шкала основана на времени прохождения света от далеких галактик до земного наблюдателя. Она одновременно показывает и расстояние, и возраст далеких галактик.

ЧЕТЫРЕ ШКАЛЫ

Во времена юной Вселенной в возрасте нескольких десятков миллионов лет космический газ состоял из водорода (76% массы) и гелия (24%), образовавшихся через несколько минут после Большого взрыва (плюс совсем немного лития). Его температура не особенно отличалась от температуры реликтового микроволнового излучения, которая к тому времени составляла около 100 К. Пространство было заполнено и темной материей, плотность которой тогда была довольно высока (сейчас из-за расширения Вселенной она в десятки раз меньше). Темная материя, как и обычная, служит источником тяготения и потому вносит вклад в полную гравитационную массу газовых облаков. В этих условиях масса Джинса составляет примерно 105 солнечных масс. Это и есть нижний предел полной массы скоплений обычной (барионной) и темной материи, из которых могли родиться первые звезды. Для контраста следует отметить, что звезды нашей Галактики, в том числе и Солнце, появились на свет без всякой помощи темной материи.

Роль темной материи в запуске процесса звездообразования исключительно важна. Ионизированный водородно-гелиевый газ, заполнявший пространство вплоть до эпохи возникновения нейтральных атомов (около 400 000 лет после Большого взрыва), был настолько «сглажен» взаимодействием с реликтовым электромагнитным излучением, что его плотность всюду была практически одинакова. Если бы еще и темная материя равномерно распределялась по космическому пространству, то локальным газовым сгусткам просто неоткуда было бы взяться, и звездообразование никогда бы не началось. Этому помешали флуктуации квантовых полей, породившие частицы темной материи в первые мгновения после Большого взрыва. Поскольку она не была подвержена нивелирующему действию реликтовой радиации, ее плотность кое-где несколько превышала средние значения. Эти максимумы плотности создавали гравитационные «колодцы», в которых собирались частицы газа. Темная материя не только обеспечивала формирование первичных газовых облаков, но и влияла на их последующий коллапс. Она создавала гравитационные конверты, внутри которых обычный газ закручивался приливными силами и превращался в тонкий вращающийся диск. Так формировались протогалактики, окруженные оболочками (гало) из темной материи. Локальные уплотнения внутри диска давали начало отдельным звездам.
Но это еще не полная картина. Поскольку уплотняющийся газ нагревается, его давление растет и противодействует дальнейшему коллапсу. Чтобы коллапс не прекратился, газ должен охладиться. Для звезд, формировавшихся в нашей Галактике, в том числе и для Солнца, это не составляло проблемы. В те времена космическая среда уже содержала частицы пыли и отдельные многоэлектронные атомы (скажем, азота, углерода и кислорода). При столкновениях они легко излучали фотоны и теряли энергию, вследствие чего температура газовой среды упала до 10-20 К. У первичных облаков такого выхода не было, и они могли терять температуру лишь за счет излучения атомарного и молекулярного водорода. Но атомарный водород служит эффективным охладителем лишь при нагреве свыше 10 000 К, а первичные облака были много холоднее. Процесс звездообразования спасали двухатомные молекулы водорода, теряющие энергию уже при нескольких сотнях кельвинов. По всей вероятности, они возникли благодаря столкновениям атомов водорода со свободными электронами, которых в космическом пространстве вполне хватало (электроны лишь катализировали эту реакцию и потому сами не расходовались).

ОТКРЫЛАСЬ БЕЗДНА, ЗВЕЗД ПОЛНА

Когда зажглись первые звезды, не знает никто, но некоторые специалисты полагают, что это могло произойти всего через 30 млн лет после Большого взрыва. Не исключено, что в будущем эту дату пересмотрят, однако есть все основания утверждать, что в возрасте 100 млн лет Вселенная уже обладала звездными популяциями.
Звезды-пионеры были законченными эгоистами. Они заливали окружающее пространство жестким ультрафиолетом, легко разрушающим молекулы водорода, и тем самым препятствовали возникновению новых звезд. Однако своим излучением (особенно рентгеном) они постоянно подогревали окружающее пространство. Поэтому космический газ постепенно прогрелся до температур, при которых на холодильную вахту заступил атомарный водород, и процесс звездообразования возобновился. Более того, этот процесс усилился, поскольку атомарный водород при температурах свыше 10 000 К излучает больше энергии, нежели молекулярный. Вторая стадия интенсивного формирования звезд популяции III имела место внутри самых ранних галактик, которые были еще очень мелкими (по современной классификации — карликовыми).

Читайте также:  Мотивирующее послание от вселенной

Дозвездная Вселенная не отличалась сложностью. Ее состояние описывают всего лишь несколько космологических параметров — в частности, плотность различных форм материи и температура реликтового излучения. Новорожденные звезды одновременно исполняли роль мощных источников электромагнитных волн и фабрик химических элементов. Хотя жизненный срок первых светил был недолгим, они качественно изменяли космическую среду.
Первые звезды вспыхивали в зоне повышенной плотности газовых частиц, образовавшихся в ходе гравитационного коллапса облаков барионной и темной материи с массой порядка 10 5 — 10 6 солнечных масс. Естественно, существуют разные сценарии звездообразования (их можно обсчитать на суперкомпьютере, хотя и не полностью), но в целом все модели сходятся в том, что в ходе фрагментации первичных облаков внутри гало из темной материи формировались сгустки газа, тянущие на несколько сотен солнечных масс. Эта величина соответствует массе Джинса для температуры около 500 К и плотности газа порядка 10 000 частиц на 1 см 3 . Поэтому вскоре после формирования газовые сгустки теряли устойчивость и претерпевали гравитационный коллапс. Их температура возрастала весьма умеренно благодаря охлаждающему действию молекулярного водорода. В конечном счете они превращались в аккреционные диски, в которых и родились первые звезды.
До недавнего времени считали, что коллапсирующий сгусток с подобными параметрами больше не распадается и становится родоначальником единственной звезды. Вычисления, основанные на оценке темпов аккреции газа к центру диска, показывают, что масса таких звезд не могла быть больше 1000 солнечных масс. Это теоретическая верхняя граница, и пока не ясно, действительно ли существовали подобные сверхгиганты. Согласно консервативным оценкам, звезды первого поколения не были тяжелее 300, максимум 500 солнечных масс. Нижний предел массы этих звезд задается тем, что молекулярный водород способен снизить температуру облака только до 200 К, и потому звезда, не дотягивающая до 30 масс Солнца, просто не может родиться. Поскольку первичные облака фрагментировались на множество локальных сгущений, первые звезды, скорее всего, возникали сериями численностью в сотни, тысячи (а то и больше) светил. Конечно, это были еще не галактики (те сформировались позднее), но все-таки вполне внушительные звездные сообщества.

Источник

Какой была первая звезда?

Сейчас ночное небо усеяно миллиардами ярких звезд, которые человечество с жадностью изучает многие тысячи лет. Вы тоже способны присоединиться для самостоятельных поисков в телескоп, если используете карту звездного неба онлайн на сайте. Но как появилась первая звезда на небе?

Ученые знают, что известный нам космос начался с Большого Взрыва 13.7 миллиардов лет назад. Первые несколько сотен миллионов лет Вселенная представляла собою раскаленное место. Но потом она остыла до необходимой температуры, позволившей гравитации накапливать водород и гелий.

На короткий период времени температура и давление были идеальны, чтобы водород слился в гелий. Именно поэтому во всем пространстве можно наблюдать одинаковое соотношение: 73% водорода, 25% гелия, а все остальное – микроэлементы.

Художественное представление первой звезды

Полагают, что чистое соотношение водорода и гелия позволило первым звездам разрастись в гораздо массивные объекты, чем мы видим сегодня. Они легко могли достигнуть нескольких сотен солнечных масс (сегодняшний максимум ­– 150 солнечных масс).

Это было первое поколение звезд – популяция III. Скорее всего, они прожили всего несколько миллионов лет, после чего взорвались как сверхновые. Но это очень важные объекты, так как в своих ядрах сформировали тяжелые элементы, а при взрыве выбросили также золото и уран.

Они могли стремительно пройти сквозь несколько циклов. С их помощью мы получили объекты с большим количеством тяжелых элементов. Конечно, все они невероятно древние, поэтому в прямое наблюдение ни одна не попала. Но ученым удалось нащупать несколько намеков через гравитационное линзирование (используется гравитация другой галактики, чтобы сфокусировать свет удаленного квазара). Возможно, мы сможем разглядеть эти объекты уже с появлением телескопа Джеймса Уэбба. Теперь вы знаете, какой была первая звезда.

Источник

Время первых звезд

Время первых звезд

Когда и как возникли первые звезды? Как они выглядели? Какими свойствами обладали? Какова была их масса? Можно ли сегодня отыскать эти звезды?

Все эти вопросы вызывают огромный интерес у астрономов. Как отмечают исследователи, «первые звезды подготовили сцену для всех последующих событий, которые протекали в нашей Вселенной и привели к формированию крупных структур». Пока еще ученым не удалось обнаружить «Адама и Еву звездного мира», но они уверены, что этот миг не за горами.

Читайте также:  Где находится черная дыра во вселенной

До появления первых звезд во Вселенной было довольно скучно. Во время Большого взрыва возникли лишь самые легкие химические элементы – водород и гелий, а также небольшое количество лития и бериллия. Все космическое пространство на протяжении долгого времени было заполнено чрезвычайно горячим непрозрачным газом. Лишь по мере того, как Вселенная расширялась, температура заполнявшего ее вещества падала. Наконец через 380 тысяч лет после Большого взрыва космос остыл до 3000 °C. Разрозненно сновавшие до этого протоны и электроны начали соединяться друг с другом, образуя отдельные атомы. Теперь излучение стало беспрепятственно распространяться. Туманную, беспросветную Вселенную залил наконец свет, видимый, впрочем, лишь… в инфракрасном и радиодиапазонах. Если бы человек мог перенестись в ту эпоху, то он ровным счетом ничего бы не разглядел. Все мироздание, с нашей точки зрения, по-прежнему окутывал мрак.

Потом, через 300 миллионов лет, в этом мраке стали вспыхивать первые, редкие звезды, словно лампы в городе, погрузившемся в ночную тьму. Космологи пока могут лишь моделировать протекавшие тогда события. Во многом приходится полагаться на гипотезы.

В то время важнейшую роль в мироздании играло темное вещество. Оно образовывало огромные сгустки – гало, где, подчиняясь его мощному притяжению, скапливалось еще и большое количество обычного вещества. Компьютерные модели показывают, что уже через 100 миллионов лет после Большого взрыва возникли первые карликовые галактики, представлявшие собой рассеянные скопления холодного темного вещества и горячих газовых масс – смеси водорода и гелия. В них не было звезд – они еще не сформировались. Эти галактики сливались друг с другом, образуя все более крупные объекты. Млечный Путь, как показывают расчеты, возник в результате постепенного слияния около миллиона подобных галактик.

Первые звезды начали зарождаться лишь после того, как газовые массы остыли. Это происходило в самых компактных и плотных гало. Первые звезды не были похожи на те звезды, что и теперь продолжают появляться в отдельных областях Млечного Пути. Они были очень крупными, весили в 100 и более раз больше, чем Солнце (по некоторым оценкам, их масса могла достигать 1000 солнечных масс). Их видимая поверхность была разогрета до 100 000 °C (температура внешних слоев Солнца – около 5500 °C).

Газовые массы, из которых состояли эти звезды, почти не содержали тяжелых элементов. Впрочем, и сегодня их концентрация чрезвычайно мала. На 3000 атомов водорода приходится всего по одному атому углерода и два атома кислорода. А ведь это самые распространенные тяжелые элементы во Вселенной! Теперь они играют важную роль в зарождении звезд.

Первые звезды начали зарождаться лишь после того, как газовые массы остыли

Когда молекулярное облако сжимается под действием собственной гравитации, температура этого сгустка растет. Увеличивается и давление внутри облака, оно препятствует его дальнейшему сжатию. Тяжелые элементы служат охладителем, и потому процесс формирования звезды продолжается.

В ранней Вселенной таких охладителей не было. Тем не менее звезды возникали. В 2008 году свое решение этой загадки предложили японские астрофизики Наоки Ёсида и Кадзуюки Омукаи и их американский коллега Ларс Хернквист. В своей модели они рассматривали громадное гало, состоявшее из темного вещества. Находившееся в этом гало облако водорода и гелия постепенно сжималось, пока его температура не возросла до 10 000 °C. Давление раскаленного газа препятствовало его дальнейшему сжатию. Тем не менее возникла протозвезда, которая весила, правда, в сотню раз меньше, чем Солнце. Давление и температура в ее недрах еще долгое время были недостаточны для того, чтобы вспыхнула термоядерная реакция. Однако зарождавшаяся звезда продолжала притягивать окружающие массы газа. Модель, которую разработал Фолькер Бромм из Техасского университета, показывает, что всего за несколько тысяч лет масса этой звезды неимоверно возросла. Когда наконец она превысила 100 солнечных масс, ядро звезды уплотнилось настолько, что началась реакция термоядерного синтеза.

Этот сценарий, созданный усилиями нескольких групп ученых, объясняет, почему звезды первого поколения принципиально отличались от современных звезд. Они не только весили гораздо больше, чем Солнце, но и светили в миллионы раз ярче его. Это излучение пронизывало мощную пелену газа, окружавшую звезду, и разогревало ее. Каждая из этих звезд была окружена раскаленным газовым пузырем, порой достигавшим в поперечнике 15 тысяч световых лет. Диаметр нашей Галактики сейчас всего в несколько раз больше, чем диаметр одной-единственной звезды, которую обволакивал этот гигантский шлейф.

События, протекавшие тогда, недоступны наблюдению астрономов. Однако, как явствует из исследования отдаленных квазаров, эпоха первых звезд завершилась примерно через 800 миллионов лет после Большого взрыва. И еще одно выяснили ученые. Уже в эпоху первых звезд та смесь водорода и гелия, что заполняла космическое пространство, стала обогащаться всеми известными нам сегодня тяжелыми элементами, которые возникали после взрывов отдельных звезд.

Но как протекали эти взрывы? Были ли они похожи на взрывы современных сверхновых? Как показывают, например, компьютерные модели, звезда, чья масса лежала в диапазоне от 140 до 260 солнечных масс, взрывалась из-за особого феномена, который называется «нестабильностью пар». Первая сверхновая этого типа – SN 2007bi – была обнаружена лишь в 2007 году в карликовой галактике, расположенной на расстоянии 1,6 миллиарда световых лет от Земли. Механизм, приводивший к подобным взрывам, таков.

Читайте также:  Сравнение масштабов во вселенной

В течение нескольких миллионов лет в недрах звезды поддерживалось равновесие. Мощная сила гравитации стремилась ее сжать, а интенсивный поток излучения, исходивший из ее недр, не давал это сделать. Фотоны непрестанно сталкивались с атомными ядрами, создавая силу давления, распиравшую звезду. Когда же горючее в ее топке заканчивалось, она начинала сжиматься. При этом давление в ее недрах достигало такой громадной величины, что фотоны – по знаменитой формуле Эйнштейна, связывающей энергию и массу, – превращались в вещество. Каждая пара фотонов порождала другую пару – электрон и его античастицу, позитрон. Наконец в недрах звезды не оставалось фотонов. Теперь ничто не препятствовало дальнейшему коллапсу. Температура и давление в недрах звезды стремительно нарастали, вновь вспыхивала термоядерная реакция. В результате почти половина всей ее массы превращалась в тяжелые элементы. Следовал мощнейший взрыв, который астрономы сравнивают со взрывом водородной бомбы.

Почти все, что мы знаем о подобных звездах, – это результат компьютерного моделирования. Однако даже современные компьютеры могут ошибаться. Лишь наблюдения, которые будут проводиться с помощью космических телескопов нового поколения, дадут окончательный ответ на вопрос, что же происходило в эпоху первых звезд.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Конец первых 5 недель

Конец первых 5 недель Для большинства мужчин первые 5 недель кажутся неопределенными. Ваши первые успехи, скорее всего, будут сопровождаться сомнением. Чувство удивления зачастую объясняется тем, что вы спрашиваете себя, почему же вы не наткнулись на технику упражнений

Часть 5 После первых пяти недель

Часть 5 После первых пяти недель В этой части вы узнаете:? о продвинутой программе, которую будете использовать после первых пяти недель;? как увеличить интенсивность, используя продвинутые упражнения и другие методы;? ключевые способы максимизации прироста;? как

Какую скорость показал победитель первых автогонок в США?

Какую скорость показал победитель первых автогонок в США? Победитель первых автомобильных гонок, которые прошли в США в 1895 году, показал невиданно высокую для той поры скорость – 24 километра в час. Всего через 15 лет, в начале 1911 года, гоночный автомобиль фирмы «Бенц»

5.2. Действия при первых признаках повреждения диска

5.2. Действия при первых признаках повреждения диска Наиболее типичными симптомами, предшествующими возникновению серьезных дефектов на диске — следующие:— отсутствие доступа к отдельному файлу или появление в текстовых файлах посторонних символов;— замедление

ГЛАВА I. Российский Государственный герб: от первых печатей до наших дней

ГЛАВА I. Российский Государственный герб: от первых печатей до наших дней Древнегреческое слово «символ» имеет несколько значений. В том смысле, в каком оно употребляется применительно к атрибутике государства, следует понимать его как условное обозначение образа,

Как питаться на первых порах после операции?

Как питаться на первых порах после операции? Каким образом питаться после операций на желудке, толстой кишке, желчном пузыре, вам расскажет лечащий врач перед выпиской. Советы, которые вы надеетесь найти в полезных книгах, не могут заменить непосредственного общения с

О чем рассказывается в первых русских мемуарах?

О чем рассказывается в первых русских мемуарах? Первые русские мемуары появились в XVIII веке. Это было время дворцовых переворотов и бурных изменений в политической и общественной жизни.Первые русские писатели-мемуаристы ставили перед собой конкретную цель — правдиво

Россия при первых Романовых

Россия при первых Романовых «Бунташный век» После преодоления Смуты социальное напряжение в обществе не только не исчезло, но усилилось. Росли привилегии имущих, во всем проявлялось засилье бюрократии; стремительно развивалось холопство и крепостное право. По-прежнему

Легенды о сотворении первых людей

Легенды о сотворении первых людей Бытовавшие у восточных славян легенды о сотворении первых людей — поздние по происхождению и, по большей части, являются переложением апокрифических книжных сказаний. В них, однако, сохранились архаические мифологические

1954–1957 Создание и запуск первых искусственных спутников Земли

1954–1957 Создание и запуск первых искусственных спутников Земли Занимаясь созданием баллистических ракет дальнего действия и особенно межконтинентальной ракеты Р-7, Сергей Павлович Королев постоянно возвращался к идее практического освоения космоса. Его мечта

СОЦИАЛЬНОЕ ВРЕМЯ (время человеческого бытия)

СОЦИАЛЬНОЕ ВРЕМЯ (время человеческого бытия) — коллективное перцептуальное время, универсалия культуры, содержание которой лежит в основе концептуального времени, конституирующегося в феномене истории как осознанной процессуальности социальной жизни. Наиболее

О ПЕРВЫХ ШАГАХ МОТОЦИКЛА

О ПЕРВЫХ ШАГАХ МОТОЦИКЛА Известно, что со временем понятия и масштабы меняются. Первую поездку на мотоцикле можно считать и первым путешествием на нем, хотя сегодня даже путь из Минска в Прибалтику или на Черное море многие считают не путешествием, а просто поездкой. Итак,

Развитие ребенка первых месяцев

Развитие ребенка первых месяцев Сначала грудной ребенок учится поднимать голову, лежа на животе, позже – пытается держать ее, еще позже – поворачиваться самостоятельно, затем – сидеть, ползать, вставать и, наконец, самостоятельно ходить. Овладение двигательными

ДВИЖЕНИЕ ПЕРВЫХ ПОЕЗДОВ [04]

ДВИЖЕНИЕ ПЕРВЫХ ПОЕЗДОВ [04] 1.31. Графиком движения поездов и пропуска первого поезда по линии (после ночного окна) должно быть предусмотрено увеличение времени хода на 2–3 минуты. При проходе первого поезда в тоннеле должны быть включены рабочее и аварийное освещение.На

Источник

Adblock
detector