Методы исследования в астрономии
Методы астрономических исследований
Компоненты мегамира
Космос (мегамир) – весь мир, окружающий планету Земля.
Весь космос мы наблюдать не можем по ряду причин (техническим: разбегание галактик → свет не успевает долететь).
Вселенная – часть космоса, доступная наблюдению.
Космология – изучает строение, происхождение, эволюцию и будущую судьбу Вселенной в целом.
Основу этой дисциплины составляют астрономия, физика и математика.
Астрономия (буквально – наука о поведении звезд) – более узкая отрасль космологии (наиболее важная!) – наука о строении и развитии всех космических тел.
Методы исследования в астрономии
В астрономии непосредственно можно наблюдать только объекты, испускающие электромагнитное излучение , в том числе свет.
Основную информацию получают при использовании оптических приборов.
1. Оптическая астрономия – изучает видимые (т.е. светящиеся) объекты.
Наблюдаемая, или светящаяся, материя либо сама испускает видимый свет в результате идущих внутри нее процессов (звезды), либо отражает падающие лучи (планеты Солнечной системы, туманности).
В 1608 г. Г. Галилей направил на небо свою простую подзорную трубу, совершив тем самым революцию в области астрономических наблюдений. Сейчас астрономические наблюдения проводят с помощью телескопов.
Оптические телескопы бывают 2-х типов: рефракторные (свет собирает линза → необходимы большие линзы, которые могут гнуться под собственным весом → искажение изображения) и рефлекторные (свет собирает зеркало, таких проблем нет → большинство профессиональных телескопов — рефлекторы).
В современных телескопах человеческий глаз заменен фотопластинками или цифровыми камерами, которые в состоянии аккумулировать световой поток на протяжении больших временных промежутков, что позволяет обнаруживать еще более мелкие объекты.
Телескопы устанавливаются на высоких горных вершинах, где в наименьшей степени сказывается влияние атмосферы и света больших городов на изображение. Поэтому сегодня большая часть профессиональных телескопов сконцентрирована в обсерваториях, которых не так много: в Андах, на Канарских о-вах, на гавайских вулканах (4205 м над ур. моря, на потухшем вулкане – самая высокая обсерватория в мире) и в некоторых особо изолированных местах Соединенных Штатов и Австралии.
Благодаря международным соглашениям, стрáны, в которых нет подходящих для установки телескопов мест, могут установить свою аппаратуру в местах с такими условиями.
Самый крупный телескоп – строится в Чили Южно-Европейской обсерваторией (включает систему из 4 телескопов диаметром 8,2 м каждый).
В 1990 г. на орбиту выведен оптический телескоп «Хаббл» (США) (h = 560 км).
Его длина – 13,3 м, ширина – 12 м, зеркало диаметром 2,4 м, общая масса – 11 т,
Благодаря ему получено глубокое, никогда ранее недостижимое изображение звездного неба, наблюдались планетарные системы в стадии формирования, получены данные о существовании огромных черных дыр в центрах разных галактик. Телескоп должен закончить работу к 2005 г; сейчас запущен другой более современный.
2. Неоптическая астрономия – изучает объекты, испускающие ЭМ-излучение за рамками видимого света.
Электромагнитное излучение – форма электрической и магнитной энергии, которая распространяется в космосе со скоростью света. Единица измерения – длина волны (м).
ЭМ-спектр условно разделен на полосы, характеризующиеся определенным интервалом длин волн. Четкие границы между диапазонами определить нельзя, т.к. они часто перекрывают друг друга.
Аппаратура для неоптической астрономии сильно отличается от традиционных телескопов (больше напоминает счетчики частиц, чем телескопы) и в большинстве случаев находится на борту спутников на орбите Земли, т.к. земная атмосфера поглощает почти всё электромагнитное излучение, идущее из космоса, кроме видимого. → на Земле объекты, испускающие это ЭМ-излучение нельзя зафиксировать.
Такая аппаратура используется с 1930-х гг. Первый искусственный спутник Земли с астрономической аппаратурой был запущен в 1957 г. СССР. Помимо астрономических, спутники выполняют военные, экологические, телекоммуникационные и др. задачи.
В соответствии с участками ЭМ-спектра выделились разные разделы неоптической астрономии:
Ø Радиоастрономия фиксирует радиоизлучение (ДВ).
Радиотелескоп состоит из трех частей : параболической антенны, усилителя сигналов и системы анализа и регистрации данных. Диаметр антенны обычно составляет десятки метров (до 300 м), ее можно перенаправлять в желаемом направлении неба.
Радиотелескопы чувствительнее самых мощных оптических телескопов
в 2 раза → возможность изучения очень удаленных объектов (2-3 млрд. световых лет.).
Ø Инфракрасная астрономия . Телескопы для наблюдения в ИК-диапазоне устанавливают на большой высоте: на воздушных шарах, самолетах или чаще всего на спутниках. При помощи таких телескопов наблюдают относительно холодные объекты (планеты, пылевые облака).
Ø Ультрафиолетовая астрономия . Наблюдения почти полностью ведутся в космосе. Благодаря УФ-астрономии открыта потеря материи звездами в виде звездного ветра, подтверждены выбросы водяного пара кометами и мн. др.
Ø Рентгеновская астрономия . Наблюдения также ведутся в космосе. Благодаря такой аппаратуре было открыто рентгеновское излучение Солнца и зарегистрировано
350 космических источников рентгеновских лучей во Вселенной (пульсары и т.п.).
Ø Гамма-астрономия . В 1991 г. на орбиту запущен спутник, предназначенный для различных экспериментов в гамма-астрономии. Благодаря такой аппаратуре установлено диффузное излучение нашей Галактики и выявлены ядра галактик с особо интенсивным излучением.
3. Нейтринная астрономия – изучение процессов, происходящих в звездах, с помощью фиксации элементарных частиц нейтрино.
Нейтрино излучаются всеми звездами в результате ядерных реакций → это источник информации о процессах в космических телах.
Нейтрино – элементарные частицы, не имеющие электрического заряда. Пока не ясен вопрос, имеют ли эти частицы массу (если да, то она очень маленькая, меньше 1/25000 массы электрона). Рождающиеся в Солнце нейтрино попадают на Землю в заметном количестве. Через 1 см 2 земной поверхности постоянно проходят миллиарды нейтрино. Образовавшиеся в центре Солнца нейтрино не поглощаются окружающей материей, поэтому они способны очень быстро достичь Земли. С Земли можно обнаружить только «солнечные» нейтрино.
Для обнаружения нейтрино используют огромные баки с тетрахлорэтиленом. Атомы Cl, взаимодействуя с нейтрино, могут превращаться в Ar, тем самым обнаруживая попадание нейтрино. Чтобы избежать неожиданного проникновения посторонних сигналов в результате прохода частиц других типов, ловушки для нейтрино устанавливают высоко в горах (на высоте 1,5 км – Баксанское ущелье на Кавказе) или на морском дне. Однако и в этих огромных аппаратах выявляется всего несколько частиц в сутки.
4. Изучение объектов Солнечной системы. Осуществляется с помощью дистанционных лабораторий на борту автоматических межпланетных станций (с 1960-х гг.) – сейчас исследованы все планеты, кроме Плутона.
При запуске таких лабораторий стараются рассчитать моменты, когда хотя бы 2 планеты должны выстроиться на своих орбитах в линию («парад планет»), чтобы сэкономить и отправить зонд сразу на несколько планет.
Для исследования Плутона готовится зонд; но чтобы долететь до пункта назначения, ему потребуется почти 12 лет при скорости 18 км/с.
Источник
IV. Методы астрофизических исследований
14. Исследование электромагнитного излучения небесных тел. Определение физических свойств и скорости движения небесных тел по их спектрам
1. Обсерватории
Астрономические исследования проводятся в научных институтах, университетах и обсерваториях. Пулковская обсерватория под Ленинградом (рис. 36) существует с 1839 г. и знаменита составлением точнейших звездных каталогов. Ее в прошлом веке называли астрономической столицей мира. В ходе развития науки в нашей стране было построено много других обсерваторий, в том числе в союзных республиках. К крупнейшим следует отнести Специальную астрофизическую обсерваторию на Северном Кавказе, обсерватории Крымскую (вблизи Симферополя), Бюраканскую (вблизи Еревана), Абастуманскую (вблизи Боржоми), Голосеевскую (в Киеве), Шемахинскую (вблизи Баку). Из институтов крупнейшие — Астрономический институт имени П. К. Штернберга при МГУ и Институт теоретической астрономии Академии наук СССР в Ленинграде.
Рис. 36. Главное здание Пулковской обсерватории
Обсерватории обычно специализируются на проведении определенных видов астрономических исследований. В связи с этим они оснащены различными типами телескопов и других приборов, которые предназначены, например, для определения точного положения звезд на небе, для изучения Солнца или решения других научных задач.
Часто для изучения небесных объектов их фотографируют при помощи телескопов, предназначенных специально для этих целей. Положения звезд на полученных негативах измеряют при помощи соответствующих приборов в лаборатории. Хранящиеся на обсерватории негативы образуют «стеклянную фототеку». Исследуя астрономические фотографии, можно измерить медленные перемещения сравнительно близких звезд на фоне более далеких, увидеть на негативе изображения очень слабых объектов, измерить величину потоков излучения от звезд, планет и других космических объектов. Для высокоточных измерений энергии световых потоков используют фотоэлектрические фотометры. В них свет от звезды, собираемый объективом телескопа, направляется на светочувствительный слой электронного вакуумного прибора — фотоумножителя, в котором возникает слабый ток, усиливаемый и регистрируемый специальными электронными приборами. Пропуская свет через специально подобранные различные светофильтры, астрономы количественно и с большой точностью оценивают цвет объекта.
2. Радиотелескопы
После того как было обнаружено космическое радиоизлучение, для его приема были созданы радиотелескопы различных систем. Антенны некоторых радиотелескопов похожи на обычные рефлекторы. Они собирают радиоволны в фокусе металлического вогнутого зеркала. Это зеркало можно сделать решетчатым (рис. 37) и громадных размеров — диаметром в десятки метров.
Рис. 37. Радиотелескоп с решетчатым зеркалом
Другие радиотелескопы представляют собой огромные подвижные рамы, на которых параллельно друг другу укреплены металлические стержни или зеркалом, спирали. Приходящие радиоволны возбуждают в них электромагнитные колебания, которые после усиления поступают в очень чувствительную приемную радиоаппаратуру для регистрации радиоизлучения объекта.
Есть радиотелескопы, состоящие из системы отдельных антенн, удаленных друг от друга (иногда на многие сотни километров), при помощи которых производятся одновременные наблюдения космического радиоисточника. Такой способ позволяет узнать структуру исследуемого радиоисточника и измерить его угловой размер, даже если он во много раз меньше одной угловой секунды.
‘РАТАН-600’. Один из крупнейших в мире радиотелескопов — радиотелескоп Академии наук СССР диаметром 600 м
Наши представления о небесных телах и их системах чрезвычайно обогатились после того, как начали изучать их радиоизлучение.
3. Применение спектрального анализа
Важнейшим источником информации о большинстве небесных объектов является их излучение. Наиболее ценные и разнообразные сведения о телах позволяет получить спектральный анализ их излучения. Этим методом можно установить качественный и количественный химический состав светила, его температуру, наличие магнитного поля, скорость движения по лучу зрения и многое другое.
Спектральный анализ, как вы знаете, основан на явлении дисперсии света. Если узкий пучок белого света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие его лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке.
Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны света уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами в спектре лежат ультрафиолетовые лучи, не видимые глазом, но действующие на фотопластинку. Еще меньшую длину волны имеют рентгеновские лучи. За красными лучами находится область инфракрасных лучей. Они невидимы, но воспринимаются приемниками инфракрасного излучения, например специальными фотопластинками.
Для получения спектров применяют приборы, называемые спектроскопом и спектрографом (рис. 38). В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.
Рис. 38. Схема устройства призменного спектрографа
В настоящее время в астрофизике используются и более сложные приборы для спектрального анализа различных видов излучения.
Существуют следующие виды спектров земных источников и небесных тел.
Сплошной, или непрерывный, спектр в виде радужной полоски дают непрозрачные раскаленные тела (уголь, нить электролампы) и достаточно протяженные плотные массы газа.
Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании. Каждый газ излучает свет строго определенных длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагревание или ионизация, вызывают определенные изменения в спектре данного газа.
Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре паров натрия особенно ярки две желтые линии.
Линейчатый спектр поглощения дают газы и пары, когда за ними находится яркий источник, дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу (рис. 39). Например, две темные линии поглощения паров натрия расположены в желтой части спектра.
Рис. 39. Сравнение спектра Солнца (вверху) с лабораторным спектром паров железа
Используя рисунок 40, отождествите линии водорода в спектрах Солнца и Сириуса.
Рис. 40. Спектры: 1 — Солнца, 2 — водорода, 3 — гелия, 4 — Сириуса (белая o звезда), 5 — α Ориона (красная звезда)
Изучение спектров позволяет производить анализ химического состава газов, излучающих или поглощающих свет. Количество атомов или молекул, излучающих или поглощающих энергию, определяется по интенсивности линий. Чем заметнее линия данного элемента в спектре излучения или поглощения, тем больше таких атомов (молекул) на пути луча света.
Солнце и звезды окружены газовыми атмосферами. Непрерывный спектр их видимой поверхности перерезан темными линиями поглощения, возникающими при прохождении излучения через атмосферу звезд. Поэтому спектры Солнца и звезд — это спектры поглощения.
Рассмотрите изображения разных спектров (см. рис. 40).
Скорости движения небесных светил относительно Земли по лучу зрения (лучевые скорости) определяются при помощи спектрального анализа на основании эффекта Доплера: если источник света и наблюдатель сближаются, то длины волн, определяющие положения спектральных линий, укорачиваются, а при их взаимном удалении длины волн увеличиваются.Эта зависимость выражается формулой
где v-лучевая скорость относительного движения с учетом ее знака (минус при сближении), λ0 — длина волны при неподвижном источнике, λ, — длина волны при движении источника и с — скорость света. Иначе говоря, при сближении наблюдателя и источника света линии спектра смещаются к его фиолетовому, а при удалении — к красному концу.
Получив спектрограмму светила, над ней и под ней впечатывают спектры сравнения от земного источника излучения (рис. 41). Спектр сравнения для нас неподвижен, и относительно него можно определять смещение линий спектра звезды на спектрограмме. Даже скорости небесных тел (обычно десятки и сотни километров в секунду) вызывают столь малые смещения (сотые или десятые доли миллиметра), что их можно измерить на спектрограмме только под микроскопом. Чтобы выяснить, какому изменению длины волны это соответствует, надо знать масштаб спектра — на сколько меняется длина волны, если мы продвигаемся вдоль спектра на 1 мм. Подставляя в формулу значения величин λ, λ0 и с = 300 000 км/с, определяют лучевую скорость движения светила v.
Рис. 41. Смещение линии Нγ в спектре одной из звезд при ее движении по лучу зрения. Сверху и снизу — лабораторные спектры сравнения. Над ними написаны длины волн в ангстремах (1 Å=0,0001 мкм)
По спектру можно определить и температуру светящегося объекта. Когда тело раскалено докрасна, в его сплошном спектре ярче всего красная часть. При дальнейшем нагревании область наибольшей яркости в спектре смещается в желтую, потом в зеленую часть и т. д. Это явление описывается законом смещения Вина, который показывает зависимость положения максимума в спектре излучения от температуры тела. Зная эту зависимость, можно установить температуру Солнца и звезд. Температуру планет и температуру звезд определяют также при помощи специально созданных приемников инфракрасного излучения.
Упражнение 14
1. Длина волны, соответствующая линии водорода, в спектре звезды больше, чем в спектре, полученном в лаборатории: К нам или от нас движется звезда? Будет ли наблюдаться сдвиг линий спектра, если звезда движется поперек луча зрения?
2. На фотографии спектра звезды ее линия смещена относительно своего нормального положения на 0,02 мм. На сколько изменилась длина волны, если в спектре расстояние в 1 мм соответствует изменению длины волны на 0,004 мкм (эта величина называется дисперсией спектрограммы) ? С какой скоростью движется звезда? Длина волны неподвижного источника 0,5 мкм = 5000 Å (ангстрем). 1 Å=10 -10 м.
Задание 6
По рисунку 41 определите дисперсию в ангстремах на 1 мм длины спектра в интервале длин волн 4260-4277 А. Измерьте, используя лупу, сдвиг центра водородной линии HY в спектре звезды (самая широкая) относительно той же линии спектра сравнения. Вычислите по этому сдвигу линий лучевую скорость звезды.
4. Внеатмосферная астрономия
Исследования с помощью космической техники занимают особое место в методах изучения небесных тел и космической среды. Начало этому было положено запуском в СССР в 1957 г. первого в мире искусственного спутника Земли. Быстро развиваясь, космонавтика сделала возможным: 1) создание внеатмосферных искусственных спутников Земли; 2) создание искусственных спутников Луны и планет; 3) перелет и спуск приборов, управляемых с Земли, на Луну и планеты; 4) создание управляемых с Земли автоматов, перемещающихся по Луне и доставляющих с Луны пробы грунта и записи разных измерений; 5) полеты в космос лабораторий с людьми и высадку их на Луну. Космические аппараты позволили проводить исследования во всех диапазонах длин волн электромагнитного излучения. Поэтому современную астрономию часто называют всеволновой. Внеатмосферные наблюдения дают возможность принимать в космосе излучения, поглощаемые или сильно изменяемые земной атмосферой: далекие ультрафиолетовые, рентгеновские и инфракрасные лучи, радиоизлучения некоторых длин волн, не доходящих до Земли, а также корпускулярные излучения Солнца и других тел. Исследования этих, ранее недоступных видов излучения звезд и туманностей, межпланетной и межзвездной среды очень обогатили наши знания о физических процессах, происходящих во Вселенной. В частности, были открыты неизвестные прежде источники рентгеновского излучения.
Много информации о природе наиболее далеких от нас тел и их систем также получено благодаря исследованиям, выполненным при помощи приборов, установленных на различных космических аппаратах.
Результаты астрофизических исследований за последние десятилетия показывают, что в окружающем нас мире происходят значительные изменения, которые затрагивают не только отдельные объекты, но и всю Вселенную в целом.
Источник