Источник энергии Солнца
Для поддержания наблюдаемой светимости Солнца в течение длительного времени необходимы достаточные запасы его внутренней энергии и процессы, перерабатывающие эту энергию в излучение. На первый взгляд, энергия, выделяемая одним килограммом солнечного вещества в секунду, равная:
— величина небольшая, она примерно равна количеству теплоты, выделяемому одним килограммом гниющих листьев. Но химической энергии, запасенной в листьях, при таком энерговыделении едва хватает на год. Солнце, по современным данным, существует около 5 млрд, лет, причем его светимость за это время существенно не изменилась, следовательно, запасов внутренней энергии солнечного вещества должно хватить еще на миллиарды лет.
Зная светимость Солнца T= 4* 10 26 Вт и продолжительность его жизни t=5*10 9 лет = 1,5-10 17 секунд, легко найти энергию, выделенную Солнцем за этот промежуток времени: 4*10 26 Вт * 1,5-10 17 с = 6*10 43 Дж. Поделив эту энергию на массу Солнца, получим, что за это время жизни Солнца каждый килограмм его вещества выделил 3*10 13 Дж энергии.
Удельная теплота сгорания самого калорийного химического горючего — бензина — равна 4,6*10 7 Дж/кг, что значительно меньше внутренней энергии, выделяемой 1 кг солнечного вещества. Поэтому идея о свечении Солнца за счет химических реакций, высказанная в середине XIX в., была несостоятельной. Если бы это было так, то запасов энергии хватило бы только на 800 лет.
Примерно в то же время известный немецкий физик Г. Гельмгольц (1821 —1894 гг.) выдвинул гипотезу, которой пытался объяснить энерговыделение Солнца за счет его гравитационного сжатия; сжатие приводит к выделению тепла и к уменьшению запасов потенциальной энергии солнечного вещества. Однако простые подсчеты показывают, что при современной светимости Солнца запасов его потенциальной энергии хватило бы всего на несколько миллионов лет.
Единственным приемлемым источником энергии, поддерживающим излучение Солнца, может служить термоядерная энергия, выделяемая при образовании (синтезе) ядер атомов гелия, из ядер водорода.
Для протекания ядерных реакций необходима температура в несколько миллионов кельвинов, при которой участвующие в реакции частицы с одинаковым электрическим зарядом смогли бы получить достаточную энергию для взаимного сближения, преодоления электрических сил отталкивания и слияния в одно новое ядро. Ядерные реакции, протекающие при высоких температурах, получили название термоядерных реакций. Именно такие реакции протекают в недрах Солнца.
Расчеты показывают, что в результате термоядерных реакций синтеза из водорода массой 1 кг образуется гелий массой 0,99 кг и выделяется около 9*10 14 Дж энергии. Если сравнить эту величину с энергией (3*10 13 Дж), которую Солнце уже выделило каждым килограммом водорода за 5 млрд, лет своей жизни, то оставшегося в нем водорода должно было бы хватить почти на 150 млрд. лет. Но так как реакции синтеза протекают только в ядре Солнца, содержащем примерно десятую долю всей его массы, то запасов ядерного горючего хватит еще на 10 млрд. лет.
Источник
Энергия Солнца за счет термоядерных реакций
Термоядерная реакция происходит когда из более лёгких элементов образуются тяжелые. Это явление может произойти только при высоком давлении и температуре как на Солнце.
Много было гипотез появления энергии от солнца начиная от бомбардировки метеоритами, сжатия элементов до распада тяжелых элементов как при ядерном делении.
Самая верная оказалась гипотеза высказанная в 1935 году американским астрофизиком Ханс Альбрехт Бете: источником солнечной энергии может быть термоядерные реакции на Солнце превращения водорода в гелий. За это Бете получил Нобелевскую премию в 1967 году.
Солнце – совершенный термоядерный реактор
В последнее время ученые всего мира пытаются получить термоядерную энергию, которая будет в производстве более эффективна, чем ядерная реакция. Такой термоядерный реактор мог бы соединять легкие ядра в более тяжелые, приблизительно также, как это происходит на Солнце. На разработку этого проекта затрачиваются огромные средства.
В то же время в природе существует уже пять миллиардов лет совершенный термоядерный реактор – Солнце.
В ядре звезды в том числе и как наше Солнце происходит огромное количество реакций. Во время каждой реакции количество частиц понижается. Это вызывает понижение давления в ядре звезды, так как давление пропорционально количеству частиц. Внешняя оболочка звезды сдавливает гелиевое ядро, которое нагревается, подобно тому, как нагревается сдавливаемый воздух в воздушном насосе. Но в то время, как тепло возникает за счет энергии наших мускулов, тепло в ядре звезды возникает за счет гравитационной энергии.
Горячее ядро нагревает слой водорода, покрывающий его. При температуре свыше 7 миллионов градусов по Кельвину водород начинает превращаться в гелий.
На этом этапе звезда, обладает двумя источниками энергии: энергией гравитационного сжатия выгоревшего гелиевого ядра и термоядерных реакций в слое, окружающем ядро.
У звезды с двумя источниками энергии повышается ее светимость. В то время как ядро звезды вследствие сил гравитации сжимается, горение водорода на поверхности звезды в процессе расширения охлаждается (приобретает красный цвет).
Нагревание гелия в ядре красного гиганта продолжается до тех пор, пока температура не достигнет ста миллионов градусов. При этой температуре альфа-частицы сталкиваются с такой скоростью, что преодолевают силу взаимного электрического отталкивания и вследствие этого могут приблизиться на расстояние 1 ферми (1 ферми 1×10 −15 м) . Между альфа-частицами начинает действовать мощная ядерная сила, которая соединяет их в более сложное атомное ядро.
Характеристики превращения
Считается, что термоядерные реакции на солнце совершенные по следующим причинам:
- Превращение водорода в гелий является наиболее эффективным способом освобождения энергии в Солнечной системе. Никакая другая ядерная или химическая реакция не способна освободить из вещества столько ресурсов, сколько освобождается их в недрах Солнца в результате превращения водорода в гелий.
- Самый безопасный реактор, поскольку не может взорваться, обладая столь совершенной системой управления своих внутренних процессов. Всякий рискованный перегрев вызывает расширение и моментальное охлаждение. Температура поверхности Солнца относительно стабильна.
- Почти вечный источник. Ведь процесс освобождения энергии в нем будет продолжаться еще по крайней мере десять миллиардов лет.
- Звезда поставляет на нашу планету беспрерывно громадное количество теплоты (180 000 ТВт), намного больше того количества, которое человечество способно употребить. Парадоксально звучат слова об энергетическом кризисе, в то время как Солнце предлагает нам в 20 000 раз больше, чем нужно всем обитателям Земли вместе взятым.
- Энергия, которую дает нам Солнце, абсолютно чистая. Она не загрязняет окружающую среду ни в химическом, ни в радиоактивном отношении.
- Солнце за счет термоядерной реакции тепло дает даром.
- Оно настолько далеко, что никто не может злонамеренно использовать его в целях уничтожения жизни на нашей планете.
- Совершенный солнечный термоядерный реактор служит исключительно в мирных целях, для пользы всего живого на Земле. В руках человека ядерная энергия превратилась в орудие страдания и смерти (Хиросима и Нагасаки).
- Солнечная энергия, поступающая к нам в виде фотонов, высококачественна. Ее можно легко преобразовывать в любой другой вид необходимый в быту, промышленности, транспорте, сельском хозяйстве. Солнечное излучение можно превращать прямым или косвенным путём в другие виды энергии: электрическую, химическую , тепловую, механическую. Отрасль энергетики, занимающаяся использованием солнечной энергии, называется гелиоэнергетикой. Во многих странах мира функционируют самые разные гелиоустановки.
Источник
Каков источник энергии излучения солнца запишите реакцию
Вопрос по физике:
Какой источник энергии излучения у Солнца? Какие изменения с его веществом происходят при этом?
Ответы и объяснения 2
Астрономы установили, что в недрах Солнца температура около 20 млн. градусов. В этих условиях происходит сложное превращение самого легкого элемента — водорода — в гелий. При этом выделяется огромное количество атомной энергии, которой вполне достаточно, чтобы обеспечить излучение Солнца. Водорода же на Солнце очень много. Подсчитано, что его хватит еще на десятки миллиардов лет.
Знаете ответ? Поделитесь им!
Как написать хороший ответ?
Чтобы добавить хороший ответ необходимо:
- Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
- Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
- Писать без грамматических, орфографических и пунктуационных ошибок.
Этого делать не стоит:
- Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
- Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
- Использовать мат — это неуважительно по отношению к пользователям;
- Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?
Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.
Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!
Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.
Источник
Какая термоядерная реакция происходит на Солнце?
Известно, что тепло вырабатывается на Солнце вследствие ядерных реакций. В чем суть этих загадочных процессов?
Большая часть привычного нам вещества состоит из молекул и атомов, например, из атомов железа или кислорода. В ходе химических реакций атомы элементов перестраиваются в новые молекулы, но сами не меняются. Долгое время считалось, что получить из атомов одного элемента атомы другого элемента (скажем, из свинца золото) невозможно. Однако в конце XIX в. были открыты ядерные реакции, в ходе которых изменяются сами атомы.
На Солнце происходят термоядерные реакции. Основной из них является протон-протонный цикл. Его суть заключается в том, что из водорода получается гелий. Сначала два протона (а протон – это название ядра водорода) сливаются друг с другом и образуют дейтрон – ядро дейтерия, одного из изотопов водорода. Далее дейтрон сталкивается ещё с одним протоном, в результате возникает изотоп гелий-3. Наконец, два ядра гелия-3 также сливаются, что приводит к образованию гелия-4 и освобождению 2 протонов. Получается, что в ходе цикла этих реакций из 4 протонов получается 1 ядро гелия-4, при этом выделяется некоторое количество энергии.
На протон-протонный цикл приходится 98% энергии, выделяемой на Солнце. В ходе других реакций из гелия получается углерод, из углерода – неон и магний, из неона – аргон и кальций и т.д. Таким образом, в звезде «по цепочке» из водорода образуется огромное количество разнообразных элементов. Этот процесс называют звездным нуклеосинтезом. Изначально, после Большого взрыва, во Вселенной не было никаких других элементов, кроме водорода, гелия и небольшого количества лития. Именно благодаря звездному нуклеосинтезу мы живем в мире, где есть железо, золото, серебро, кислород и ещё порядка 100 элементов таблицы Менделеева.
Для термоядерных реакций нужны особые условия. Дело в том, что протоны обладают положительным зарядом, поэтому они отталкиваются друг от друга. Ядра водорода должны обладать огромной скоростью, чтобы они смогли столкнуться, несмотря на противодействие электростатических сил. Скорость же элементарных частиц тем выше, чем выше температура вещества и его плотность. В ядре температура достигает 15 млн °С, а давление составляет 340 млрд атмосфер. Этого как раз достаточно для термоядерных реакций. Во внешних же слоях Солнца термоядерные реакции не идут, хотя там тоже весьма жарко.
В ходе термоядерных реакций Солнце каждую секунду «сжигает» более 4 млн тонн водорода. Через 5 млрд лет он почти закончится, что приведет к резкому расширению Солнца и его последующему угасанию.
Список использованных источников
Источник
Источник энергии солнца
Солнечная энергия дает жизнь всему живому на Земле. Под ее воздействием испаряется вода с морей и океанов, превращаясь в водные капли, образуя туманы и облака. В результате, эта влага вновь выпадает на Землю, создавая постоянный круговорот. Поэтому, мы постоянно наблюдает снег, дождь, иней или росу. Создаваемая солнцем огромная система отопления, позволяет наиболее оптимально распределять тепло по поверхности Земли. Чтобы правильно понимать и использовать эти процессы, необходимо представлять себе источник энергии солнца и то, от чего зависит его влияние на нашу планету.
Виды солнечной энергии
Основным видом энергии, выделяемой Солнцем, по праву считается лучистая энергия, оказывающая прямое влияние на все важнейшие процессы, происходящие на Земле. Если сравнивать с ней другие земные энергетические источники, то их запасы бесконечно малы и не позволяют решить всех проблем.
Из всех звезд, Солнце расположено к Земле ближе всего. По своей структуре оно является газовым шаром, многократно превышающим диаметр и объем нашей планеты. Поскольку размеры газового шара достаточно условны, то его границами считается видимый с Земли солнечный диск.
Источник и физические свойства солнечной энергии
Все процессы, происходящие на Солнце, можно наблюдать лишь на его поверхности. Однако, основные реакции протекают в его внутренней части. По сути, это гигантская атомная станция с давлением примерно 100 млрд. атмосфер. Здесь, в условиях сложных ядерных реакций, происходит превращение водорода в гелий. Именно эти реакции образуют основной источник энергии солнца. Внутренняя температура составляет, в среднем, приблизительно 16 млн. градусов.
Газ, бушующий внутри Солнца, имеет не только сверхвысокую температуру, но и является чрезвычайно тяжелым, обладающим плотностью, многократно превышающей среднюю солнечную плотность. Одновременно, происходит возникновение рентгеновских лучей, которые, по мере приближения к Земле, увеличивают длину своих волн и уменьшают частоту колебаний. Таким образом, они постепенно становятся видимым и ультрафиолетовым светом.
При отдалении от центра, характер лучистой энергии изменяется, оказывая влияние и на температуру. Происходит ее постепенное снижение сначала до 150 тыс. градусов. С Земли хорошо видна только внешняя солнечная оболочка, так называемая фотосфера. Ее толщина составляет примерно 300 км, а температура верхнего слоя снижается до 5700 градусов.
Над фотосферой расположена солнечная атмосфера, состоящая из двух частей. Нижний слой носит название хромосферы, а верхний слой, не имеющий границ, представляет собой солнечную корону. Здесь газы разогреваются до нескольких миллионов градусов под действием ударных волн чудовищной силы.
Источник